A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves

被引:117
|
作者
Arteca, JM [1 ]
Arteca, RN [1 ]
机构
[1] Penn State Univ, Dept Hort, University Pk, PA 16802 USA
关键词
Arabidopsis; ACC synthase; ethylene; light; touch; wound;
D O I
10.1023/A:1006177902093
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Physiological and biochemical studies have provided evidence that mechanical strain (touch)-induced modifications in plant growth and development may be due to ethylene. In order to better understand the involvement of ethylene in touch-induced responses, we identified and characterized an Arabidopsis cDNA (ACS6) encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase which is an important regulatory enzyme in the ethylene biosynthetic pathway. Northern analysis showed that ACS6 was induced by touch in the leaves of 3-week old light-grown plants within 5 min and reached maximum transcription at 15 min. ACC, which is the product of ACC synthase and the immediate precursor to ethylene, exhibited a dramatic rise between 15 and 30 min after touch stimulation. Experiments with multiple touch treatments showed that a saturation in gene expression was obtained with one touch treatment and subsequent touch stimulations were progressively less effective in promoting ACS6 expression. Additional characterization of ACS6 gene expression indicated that the gene is also induced by wounding, and by treatment with LiCl, NaCl, CuCl2, auxin, cycloheximide (CHX), aminooxyacetic acid (AOA) and ethylene. ACC levels were also increased in response to each of these treatments with the exception of CHX and AOA which resulted in a decrease and no effect, respectively. Our results show that ACS6 is rapidly turned on in response to touch which is followed by an increase in ACC which is the immediate precursor to ethylene, thereby providing evidence that it is responsible for touch-inducible ethylene production in light-grown Arabidopsis plants. The identification and characterization of ACS6 now provides us with a tool to better understand the involvement of ethylene produced in response to external stimuli as well as during plant growth and development.
引用
收藏
页码:209 / 219
页数:11
相关论文
共 50 条
  • [1] A multi-responsive gene encoding 1-aminocyclopropane-1- carboxylate synthase (ACS6) in mature Arabidopsis leaves
    Jeannette M. Arteca
    Richard N. Arteca
    Plant Molecular Biology, 1999, 39 : 209 - 219
  • [2] THE 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE GENE FAMILY OF ARABIDOPSIS-THALIANA
    LIANG, XW
    ABEL, S
    KELLER, JA
    SHEN, NF
    THEOLOGIS, A
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (22) : 11046 - 11050
  • [3] A pear 1-aminocyclopropane-1-carboxylate synthase gene preferentially expressed in leaves
    Shi, Haiyan
    Zhang, Yuxing
    XXIX INTERNATIONAL HORTICULTURAL CONGRESS ON HORTICULTURE: SUSTAINING LIVES, LIVELIHOODS AND LANDSCAPES (IHC2014): INTERNATIONAL SYMPOSIUM ON MOLECULAR BIOLOGY IN HORTICULTURE, 2016, 1110 : 113 - 119
  • [4] Structural analysis of the promoter of tomato 1-aminocyclopropane-1-carboxylate synthase 6 gene(Le-ACS6)
    CHARNG Yee-yung
    Chinese Science Bulletin, 2007, (09) : 1217 - 1222
  • [5] Characterization of two members (ACS1 and ACS3) of the 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana
    Liang, XW
    Oono, Y
    Shen, NF
    Kohler, C
    Li, KL
    Scolnik, PA
    Theologis, A
    GENE, 1995, 167 (1-2) : 17 - 24
  • [6] 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE
    ADAMS, DO
    YANG, SF
    METHODS IN ENZYMOLOGY, 1987, 143 : 426 - 429
  • [7] Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia
    Hsiao-Ping Peng
    Ter-Yun Lin
    Ning-Ning Wang
    Ming-Che Shih
    Plant Molecular Biology, 2005, 58 : 15 - 25
  • [8] Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia
    Peng, HP
    Lin, TY
    Wang, NN
    Shih, MC
    PLANT MOLECULAR BIOLOGY, 2005, 58 (01) : 15 - 25
  • [9] Structural analysis of the promoter of tomato 1-aminocyclopropane-1-carboxylate synthase 6 gene (Le-ACS6)
    Lin JingYu
    Fan Rong
    Wan XiaoRong
    Charng Yee-yung
    Wang NingNing
    CHINESE SCIENCE BULLETIN, 2007, 52 (09): : 1217 - 1222
  • [10] Brassinosteroid induction of AtACS4 encoding an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings
    Joo, S
    Seo, YS
    Kim, SM
    Hong, DK
    Park, KY
    Kim, WT
    PHYSIOLOGIA PLANTARUM, 2006, 126 (04) : 592 - 604