Error estimates for the numerical approximation of Neumann control problems

被引:51
|
作者
Casas, Eduardo [2 ]
Mateos, Mariano [1 ]
机构
[1] Univ Oviedo, EPSI Gijon, Dept Matemat, Gijon 33203, Spain
[2] Univ Cantabria, ETSI Ind & Telecomunicac, Dept Matemat Aplicada & Ciencias Computac, Santander 39071, Spain
关键词
boundary control; semilinear elliptic equation; numerical approximation; error estimates;
D O I
10.1007/s10589-007-9056-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We continue the discussion of error estimates for the numerical analysis of Neumann boundary control problems we started in Casas et al. (Comput. Optim. Appl. 31:193-219, 2005). In that paper piecewise constant functions were used to approximate the control and a convergence of order 0(h) was obtained. Here, we use continuous piecewise linear functions to discretize the control and obtain the rates of convergence in L-2(Gamma). Error estimates in the uniform norm are also obtained. We also discuss the approach suggested by Hinze (Comput. Optim. Appl. 30:45-61, 2005) as well as the improvement of the error estimates by making an extra assumption over the set of points corresponding to the active control constraints. Finally, numerical evidence of our estimates is provided.
引用
收藏
页码:265 / 295
页数:31
相关论文
共 50 条
  • [1] Error estimates for the numerical approximation of Neumann control problems
    Eduardo Casas
    Mariano Mateos
    [J]. Computational Optimization and Applications, 2008, 39 : 265 - 295
  • [2] Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations
    Eduardo Casas
    Vili Dhamo
    [J]. Computational Optimization and Applications, 2012, 52 : 719 - 756
  • [3] Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations
    Casas, Eduardo
    Dhamo, Vili
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 52 (03) : 719 - 756
  • [4] Error Estimates for the Numerical Approximation of Unregularized Sparse Parabolic Control Problems
    Casas, Eduardo
    Mateos, Mariano
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (04) : 877 - 898
  • [5] Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems
    Eduardo Casas
    Mariano Mateos
    Fredi TrÖltzsch
    [J]. Computational Optimization and Applications, 2005, 31 : 193 - 219
  • [6] Error estimates for the numerical approximation of boundary semilinear elliptic control problems
    Casas, E
    Mateos, M
    Tröltzsch, F
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (02) : 193 - 219
  • [7] Error estimates for the approximation of multibang control problems
    Christian Clason
    Thi Bich Tram Do
    Frank Pörner
    [J]. Computational Optimization and Applications, 2018, 71 : 857 - 878
  • [8] Error estimates for the approximation of multibang control problems
    Clason, Christian
    Thi Bich Tram Do
    Poerner, Frank
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (03) : 857 - 878
  • [9] Numerical approximation of optimal flow control problems by a penalty method: Error estimates and numerical results
    Hou, LS
    Ravindran, SS
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05): : 1753 - 1777
  • [10] Error estimates for Neumann boundary control problems with energy regularization
    Apel, Thomas
    Steinbach, Olaf
    Winkler, Max
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2016, 24 (04) : 207 - 233