Heat kernel estimates for the partial derivative-Neumann problem on G-manifolds

被引:0
|
作者
Perez, Joe J. [2 ]
Stollmann, Peter [1 ]
机构
[1] Tech Univ Chemnitz, Fak Math, D-09111 Chemnitz, Germany
[2] Univ Vienna, Fak Math, Vienna, Austria
基金
奥地利科学基金会;
关键词
PSEUDO-CONVEX MANIFOLDS; HARMONIC INTEGRALS; DIRICHLET FORMS; EQUATION; SPACES; HEARING; COMPLEX;
D O I
10.1007/s00229-011-0496-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove heat kernel estimates for the -Neumann Laplacian acting in spaces of differential forms over noncompact manifolds with a Lie group symmetry and compact quotient. We also relate our results to those for an associated Laplace-Beltrami operator on functions.
引用
收藏
页码:371 / 394
页数:24
相关论文
共 50 条