Unconstrained numeral pair recognition using enhanced Error Correcting Output Coding: A holistic approach

被引:0
|
作者
Zhou, J [1 ]
Suen, CY [1 ]
机构
[1] No Illinois Univ, Dept Comp Sci, De Kalb, IL 60115 USA
关键词
numeral pair recognition; ECOC; support vector machine;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a new approach to recognize touching numeral strings. Currently most methods for numeral string recognition require segmenting the string image into separate numerals. As a result, the recognition system heavily depends on the reliability of the segmentation module. This study explores the holistic strategy directly on the string images without segmentation. It builds the novel classifier by combining binary classifiers based on Data-driven Error Correcting Output Coding (DECOC). The dimensions of input images are reduced using principal components analysis. Support vector machines are used as base learners. Experiments on NIST SD19 touching numeral pairs confirm that DECOC can achieve favorable performance compared with other multi-class holistic classifiers. The method provides the flexibility of controlling the computational complexity versus accuracy. We also discuss an implementation suitable for distributing computing by decomposing the ensemble into subtasks.
引用
收藏
页码:484 / 488
页数:5
相关论文
共 50 条
  • [1] Constructing Error Correcting Output Coding Classifiers
    Yamaguchi, N
    Ishii, N
    [J]. ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 2635 - 2639
  • [2] Combining Classifiers in Error Correcting Output Coding
    Yamaguchi, Nobuhiko
    Ishii, Naohiro
    [J]. Systems and Computers in Japan, 2004, 35 (04) : 9 - 18
  • [3] A Randomised Ensemble Learning Approach for Multiclass Motor Imagery Classification Using Error Correcting Output Coding
    Bera, Sutanu
    Roy, Rinku
    Sikdar, Debdeep
    Kar, Aupendu
    Mukhopadhyay, Rupsha
    Mahadevappa, Manjunatha
    [J]. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5081 - 5084
  • [4] Unconstrained Handwritten Numeral Recognition Using Majority Voting Classifier
    Kumar, Rajiv
    Ahmed, Pervez
    Goyal, Mayank Kumar
    Kumar, Amresh
    [J]. 2012 2ND IEEE INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2012, : 284 - 289
  • [5] Probability estimation in Error correcting output coding framework using game theory
    Petrovskiy, M
    [J]. AI 2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2005, 3809 : 186 - 196
  • [6] An Enhanced Neural Network Approach for Numeral Recognition
    Venugopal, Anita
    Ali, Ashraf
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (03): : 61 - 66
  • [7] A subspace approach to error correcting output codes
    Bagheri, Mohammad Ali
    Montazer, Gholam Ali
    Kabir, Ehsanollah
    [J]. PATTERN RECOGNITION LETTERS, 2013, 34 (02) : 176 - 184
  • [8] A general coding method for error-correcting output codes
    Jiang, YH
    Zhao, QL
    Yang, XJ
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2004, 3056 : 648 - 652
  • [9] Error-Correcting Output Coding for Chagasic Patients Characterization
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3278 - 3281
  • [10] Introducing the Separability Matrix for Error Correcting Output Codes Coding
    Angel Bautista, Miguel
    Pujol, Oriol
    Baro, Xavier
    Escalera, Sergio
    [J]. MULTIPLE CLASSIFIER SYSTEMS, 2011, 6713 : 227 - 236