Two-Sample Test with Kernel Projected Wasserstein Distance

被引:0
|
作者
Wang, Jie [1 ]
Gao, Rui [2 ]
Xie, Yao [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ Texas Austin, Austin, TX 78712 USA
关键词
ANOMALY DETECTION; CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a kernel projected Wasserstein distance for the two-sample test, an essential building block in statistics and machine learning: given two sets of samples, to determine whether they are from the same distribution. This method operates by finding the nonlinear mapping in the data space which maximizes the distance between projected distributions. In contrast to existing works about projected Wasserstein distance, the proposed method circumvents the curse of dimensionality more efficiently. We present practical algorithms for computing this distance function together with the non-asymptotic uncertainty quantification of empirical estimates. Numerical examples validate our theoretical results and demonstrate good performance of the proposed method.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Two-sample Test using Projected Wasserstein Distance
    Wang, Jie
    Gao, Rui
    Xie, Yao
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 3320 - 3325
  • [2] A Kernel Two-Sample Test
    Gretton, Arthur
    Borgwardt, Karsten M.
    Rasch, Malte J.
    Schoelkopf, Bernhard
    Smola, Alexander
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 723 - 773
  • [3] A Kernel Two-Sample Test for Functional Data
    Wynne, George
    Duncan, Andrew B.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [4] A Differentially Private Kernel Two-Sample Test
    Raj, Anant
    Law, Ho Chung Leon
    Sejdinovic, Dino
    Park, Mijung
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 11906 : 697 - 724
  • [5] A Kernel Two-Sample Test for Functional Data
    Wynne, George
    Duncan, Andrew B.
    [J]. Journal of Machine Learning Research, 2022, 23 : 1 - 51
  • [6] A permutation-free kernel two-sample test
    Shekhar, Shubhanshu
    Kim, Ilmun
    Ramdas, Aaditya
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] The Kernel Two-Sample Test vs. Brain Decoding
    Olivetti, Emanuele
    Benozzo, Danilo
    Kia, Seyed Mostafa
    Ellero, Marta
    Hartmann, Thomas
    [J]. 2013 3RD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI 2013), 2013, : 128 - 131
  • [8] Sensor-level Maps with the Kernel Two-Sample Test
    Olivetti, Emanuele
    Kia, Seyed Mostafa
    Avesani, Paolo
    [J]. 2014 INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING, 2014,
  • [9] A TWO-SAMPLE TEST
    Moses, Lincoln E.
    [J]. PSYCHOMETRIKA, 1952, 17 (03) : 239 - 247
  • [10] New two-sample test utilizing interpoint distance discrepancy
    Xu, Dong
    [J]. STAT, 2024, 13 (03):