Automatic Text Classification using Modified Centroid Classifier

被引:0
|
作者
Elmarhumy, Mahmoud [1 ]
Fattah, Mohamed Abdel [2 ]
Ren, Fuji [3 ]
机构
[1] Univ Tokushima, Fac Engn, 2-1 Minamijosanjima, Tokushima 7708506, Japan
[2] Helwan Univ, FIE, Cairo, Egypt
[3] Beijing Univ Posts & Telecommun, Beijing 100088, Peoples R China
关键词
Text classification; text categorization; centroid classifier; Data mining; CATEGORIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes an approach to address the problem of inductive bias or model misfit incurred by the centroid classifier assumption to enhance the automatic text classification task. This approach is a trainable classifier, which takes into account tfidf as a text feature. The main idea of the proposed approach is to take advantage of the most similar training errors to the classification model to successively update it based on a certain threshold. The proposed approach is simple to implement and flexible. The proposed approach performance is measured at several threshold values on the Reuters-21578 text categorization test collection. The experimental results show that the proposed approach can improve the performance of centroid classifier.
引用
收藏
页码:282 / +
页数:2
相关论文
共 50 条
  • [1] A new modified centroid classifier approach for automatic text classification
    Elmarhoumy, Mahmoud
    Fattah, Mohamed Abdel
    Suzuki, Motoyuki
    Ren, Fuji
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 8 (04) : 364 - 370
  • [2] Combining rough set and centroid classifier for text classification
    Shi, Lei
    Zhang, Yamei
    Zhao, Jingying
    [J]. Journal of Information and Computational Science, 2010, 7 (01): : 79 - 84
  • [3] Using Hypothesis Margin to Boost Centroid Text Classifier
    Tan, Songbo
    Cheng, Xueqi
    [J]. APPLIED COMPUTING 2007, VOL 1 AND 2, 2007, : 398 - 403
  • [4] An improved centroid classifier for text categorization
    Tan, Songbo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (1-2) : 279 - 285
  • [5] Using Clustering and a Modified Classification algorithm for automatic text summarization
    Aries, Abdelkrime
    Oufaida, Houda
    Nouali, Omar
    [J]. DOCUMENT RECOGNITION AND RETRIEVAL XX, 2013, 8658
  • [6] Towards enhancing centroid classifier for text classification-A border-instance approach
    Wang, Deqing
    Wu, Junjie
    Zhang, Hui
    Xu, Ke
    Lin, Mengxiang
    [J]. NEUROCOMPUTING, 2013, 101 : 299 - 308
  • [7] Automatic Classification of Online Doctor Reviews: Evaluation of Text Classifier Algorithms
    Rivas, Ryan
    Montazeri, Niloofar
    Le, Nhat X. T.
    Hristidis, Vagelis
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2018, 20 (11)
  • [8] A generalized cluster centroid based classifier for text categorization
    Pang, Guansong
    Jiang, Shengyi
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2013, 49 (02) : 576 - 586
  • [9] An effective approach to enhance centroid classifier for text categorization
    Tan, Songbo
    Cheng, Xueqi
    [J]. KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2007, PROCEEDINGS, 2007, 4702 : 581 - 588
  • [10] A New Centroid-Based Classifier for Text Categorization
    Chen, Lifei
    Ye, Yanfang
    Jiang, Qingshan
    [J]. 2008 22ND INTERNATIONAL WORKSHOPS ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOLS 1-3, 2008, : 1217 - +