The maximal operator in weighted variable spaces LP(•)

被引:22
|
作者
Kokilashvili, Vakhtang [1 ]
Samko, Natasha
Samko, Stefan
机构
[1] A Razmadze Math Inst, Tbilisi, Georgia
[2] IST, Ctr CEMAT, Lisbon, Portugal
来源
关键词
maximal functions; weighted Lebesgue spaces; variable; exponent; Carleson curve; Zygmund conditions; Bari-Stechkin class;
D O I
10.1155/2007/914143
中图分类号
学科分类号
摘要
We study, the boundedness of the maximal operator in the weighted spaces L-p(. ) (rho) over a bounded open set Omega in the Euclidean space R-n or a Carleson curve Gamma in a complex plane. The weight function may belong to a certain version of a general Muckenhoupt-type condition, which is narrower than the expected Muckenhoupt condition for variable exponent, but coincides with the usual Muckenhoupt class A(p) in the case of constant p. In the case of Carleson curves there is also considered another class of weights of radial type of the form rho(t) = Pi(m)(k=1) w(k) (|t - t(k)|), t(k)= epsilon Gamma, where w(k) has the property that r/p(t(k)) w(k) (r) epsilon Phi(0)(1) is a certain Zygmund-Bari-Stechkin-type class. It is assumed that the exponent p(t) satisfies the Dini-Lipschitz condition. For such radial type weights the final statement on the boundedness is given in terms of the index numbers of the functions w(k) (similar in a sense to the Boyd indices for the Young functions defining Orlich spaces).
引用
收藏
页码:299 / 317
页数:19
相关论文
共 50 条
  • [1] ON BOUNDEDNESS OF FRACTIONAL MAXIMAL OPERATOR IN WEIGHTED Lp(.) SPACES
    Mamedov, Farman I.
    Zeren, Yusuf
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 1 - 14
  • [2] THE MAXIMAL OPERATOR ON WEIGHTED VARIABLE LEBESGUE SPACES
    Cruz-Uribe, David
    Diening, Lars
    Hasto, Peter
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) : 361 - 374
  • [3] The maximal operator on weighted variable Lebesgue spaces
    David Cruz-Uribe
    Lars Diening
    Peter Hästö
    [J]. Fractional Calculus and Applied Analysis, 2011, 14 : 361 - 374
  • [4] THE MAXIMAL OPERATOR IN WEIGHTED VARIABLE EXPONENT SPACES ON METRIC SPACES
    Kokilashvili, Vakhtang
    Samko, Stefan
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2008, 15 (04) : 683 - 712
  • [5] The fractional maximal operator and fractional integrals on variable Lp spaces
    Capone, Claudia
    Cruz-Uribe, David
    Fiorenza, Alberto
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (03) : 743 - 770
  • [6] ON SOME QUESTIONS RELATED TO THE MAXIMAL OPERATOR ON VARIABLE LP SPACES
    Lerner, Andrei K.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (08) : 4229 - 4242
  • [7] Weighted norm inequalities for the maximal operator on variable Lebesgue spaces
    Cruz-Uribe, D.
    Fiorenza, A.
    Neugebauer, C. J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 744 - 760
  • [8] L log L RESULTS FOR THE MAXIMAL OPERATOR IN VARIABLE Lp SPACES
    Cruz-Uribe, D.
    Fiorenza, A.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) : 2631 - 2647
  • [9] Weighted norm inequalities for the maximal operator on Lp(.) over spaces of homogeneous type
    Cruz-Uribe, David
    Cummings, Jeremy
    [J]. ANNALES FENNICI MATHEMATICI, 2022, 47 (01): : 457 - 488
  • [10] WEIGHTED NORM INEQUALITIES FOR THE BILINEAR MAXIMAL OPERATOR ON VARIABLE LEBESGUE SPACES
    Cruz-Uribe, D.
    Guzman, O. M.
    [J]. PUBLICACIONS MATEMATIQUES, 2020, 64 (02) : 453 - 498