Classifying spaces for the family of virtually abelian subgroups of orientable 3-manifold groups

被引:4
|
作者
Leon alvarez, Porfirio L.
Sanchez Saldana, Luis Jorge [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Circuito Exterior S-N,Colonia Copilco Bajo, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Oaxaca De Juarez 68000, Oaxaca, Mexico
关键词
Cohomological dimension; geometric dimension; 3-manifold groups; virtually abelian groups; acylindrical splittings; classifying spaces; families of subgroups; ALGEBRAIC K-THEORY; DIMENSION;
D O I
10.1515/forum-2022-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a group G, let F-n be the family of all subgroups of G containing a subgroup of finite index isomorphic to Z(r) for some r = 0, 1, 2,..., n. Joecken, Lafont and Sanchez Saldana computed the F-1-geometric dimension of 3-manifold groups. As a natural extension of the aforementioned result, the goal of this article is to compute the F-n-geometric dimension of 3-manifold groups for all n >= 2.
引用
收藏
页码:1277 / 1296
页数:20
相关论文
共 50 条
  • [1] Classifying Spaces for the Family of Virtually Cyclic Subgroups of Braid Groups
    Flores, Ramon
    Gonzalez-Meneses, Juan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (05) : 1575 - 1600
  • [2] On Classifying Spaces for the Family of Virtually Cyclic Subgroups in Mapping Class Groups
    Juan-Pineda, Daniel
    Trujillo-Negrete, Alejandra
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2016, 12 (02) : 261 - 292
  • [3] On classifying spaces for the family of virtually cyclic subgroups
    Juan-Pineda, Daniel
    Leary, Ian J.
    RECENT DEVELOPMENTS IN ALGEBRAIC TOPOLOGY, 2006, 407 : 135 - +
  • [4] Virtually cyclic dimension for 3-manifold groups
    Joecken, Kyle
    Lafont, Jean-Francois
    Sanchez Saldana, Luis Jorge
    GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (02) : 577 - 606
  • [6] NORMAL SUBGROUPS IN 3-MANIFOLD GROUPS
    SCOTT, P
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (MAY): : 5 - 12
  • [7] FRATTINI SUBGROUPS OF 3-MANIFOLD GROUPS
    ALLENBY, RBJT
    BOLER, J
    EVANS, B
    MOSER, LE
    TANG, CY
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 247 (JAN) : 275 - 300
  • [8] SUBNORMAL SUBGROUPS IN 3-MANIFOLD GROUPS
    ELKALLA, HS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 30 (OCT): : 342 - 360
  • [9] Free subgroups of 3-manifold groups
    Belolipetsky, Mikhail
    Doria, Cayo
    GROUPS GEOMETRY AND DYNAMICS, 2020, 14 (01) : 243 - 254
  • [10] Some virtually special hyperbolic 3-manifold groups
    Chesebro, Eric
    DeBlois, Jason
    Wilton, Henry
    COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (03) : 727 - 787