A semi-supervised framework for mapping data to the intrinsic manifold

被引:0
|
作者
Gong, HF [1 ]
Pan, CH [1 ]
Yang, Q [1 ]
Lu, HQ [1 ]
Ma, SD [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel scheme for manifold learning. Different from the previous work reducing data to Euclidean space which cannot handle the looped manifold well, we map the scattered data to its intrinsic parameter manifold by semi-supervised learning. Given a set Of partially labeled points, the map to a specified parameter manifold is computed by an iterative neighborhood average method called Anchor Points Diffusion procedure (APD). We explore this idea on the most frequently used closeformed manifolds, Stiefel manifolds whose special cases include hyper sphere and orthogonal group. The experiments show that APD can recover the underlying intrinsic parameters of points on scattered data manifold successfully.
引用
收藏
页码:98 / 105
页数:8
相关论文
共 50 条
  • [1] A unified semi-supervised dimensionality reduction framework for manifold learning
    Chatpatanasiri, Ratthachat
    Kijsirikul, Boonserm
    [J]. NEUROCOMPUTING, 2010, 73 (10-12) : 1631 - 1640
  • [2] Active Semi-supervised Framework with Data Editing
    Zhang, Xue
    Xiao, Wangxin
    [J]. COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2012, 9 (04) : 1513 - 1532
  • [3] Flexible Manifold Embedding: A Framework for Semi-Supervised and Unsupervised Dimension Reduction
    Nie, Feiping
    Xu, Dong
    Tsang, Ivor Wai-Hung
    Zhang, Changshui
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (07) : 1921 - 1932
  • [4] A semi-supervised SVM for manifold learning
    Wu, Zhili
    Li, Chun-hung
    Zhu, Ji
    Huang, Jian
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 490 - +
  • [5] Manifold contraction for semi-supervised classification
    Hu EnLiang
    Chen SongCan
    Yin XueSong
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (06) : 1170 - 1187
  • [6] Manifold contraction for semi-supervised classification
    HU EnLiang 1
    2 School of Mathematics
    [J]. Science China(Information Sciences), 2010, 53 (06) : 1170 - 1187
  • [7] Regularized semi-supervised classification on manifold
    Zhao, LW
    Luo, SW
    Zhao, YC
    Liao, LZ
    Wang, ZH
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 20 - 29
  • [8] Manifold contraction for semi-supervised classification
    EnLiang Hu
    SongCan Chen
    XueSong Yin
    [J]. Science China Information Sciences, 2010, 53 : 1170 - 1187
  • [9] Manifold adversarial training for supervised and semi-supervised learning
    Zhang, Shufei
    Huang, Kaizhu
    Zhu, Jianke
    Liu, Yang
    [J]. NEURAL NETWORKS, 2021, 140 : 282 - 293
  • [10] Semi-supervised Regression with Data Partitioning and Feature Mapping
    Liu, Li-Yan
    Zhang, Jia-Hui
    Min, Fan
    [J]. 2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 76 - 85