Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term

被引:19
|
作者
Jannelli, Alessandra [1 ]
Ruggieri, Marianna [2 ]
Speciale, Maria Paola [1 ]
机构
[1] Univ Messina, Dept Math & Comp Sci, Phys Sci & Earth Sci, Viale F Stagno Alcontres 31, I-98166 Messina, Italy
[2] Cittadella Univ, Kore Univ Enna, Fac Engn & Architecture, Via Olimpiadi, I-94100 Enna, Italy
关键词
Fractional derivatives; Advection-diffusion-reaction equations; Lie symmetries; Implicit trapezoidal method; FINITE DIFFERENCE/SPECTRAL APPROXIMATIONS; HIGH-ORDER APPROXIMATION; DIFFERENTIAL-EQUATIONS; CAPUTO DERIVATIVES; TIME; SYMMETRIES; CONVERGENCE; STABILITY;
D O I
10.1016/j.apnum.2020.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, numerical solutions of space-fractional advection-diffusion equations, involving the Riemann-Liouville derivative with a nonlinear source term, are presented. We propose a procedure that combines the fractional Lie symmetries analysis, to reduce the original fractional partial differential equations into fractional ordinary differential equations, with a numerical method. By adopting the Caputo definition of derivative, the reduced fractional ordinary equations are solved by applying the implicit trapezoidal method. The numerical results confirm the applicability and the efficiency of the proposed approach. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 50 条
  • [1] Numerical solutions of space-fractional advection-diffusion equation with a source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [2] Numerical Solutions of Space-Fractional Advection-Diffusion-Reaction Equations
    Salomoni, Valentina Anna Lia
    De Marchi, Nico
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [3] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    Parvizi, M.
    Eslahchi, M. R.
    Dehghan, Mehdi
    [J]. NUMERICAL ALGORITHMS, 2015, 68 (03) : 601 - 629
  • [4] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    M. Parvizi
    M. R. Eslahchi
    Mehdi Dehghan
    [J]. Numerical Algorithms, 2015, 68 : 601 - 629
  • [5] Space-fractional advection-diffusion and reflective boundary condition
    Krepysheva, N
    Di Pietro, L
    Néel, MC
    [J]. PHYSICAL REVIEW E, 2006, 73 (02):
  • [6] Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations
    Xu, Yufeng
    Agrawal, Om P.
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1178 - 1193
  • [7] NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM
    Zhuang, P.
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1760 - 1781
  • [8] Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the Lie symmetries
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    [J]. NONLINEAR DYNAMICS, 2018, 92 (02) : 543 - 555
  • [9] Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative
    Xu, Yufeng
    He, Zhimin
    Xu, Qinwu
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (03) : 588 - 600
  • [10] Differential Quadrature and Cubature Methods for Steady-State Space-Fractional Advection-Diffusion Equations
    Pang, Guofei
    Chen, Wen
    Sze, K. Y.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 97 (04): : 299 - 322