Estimating integrals of stochastic processes using space-time data

被引:0
|
作者
Niu, XF [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
来源
ANNALS OF STATISTICS | 1998年 / 26卷 / 06期
关键词
centered sampling design; infill and increase domain asymptotics; infinite moving-average processes; spectral density matrices;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a space-time stochastic process Z(t)(x) = S(x)+ xi(t)(x) where S(x) is a signal process defined on R-d and xi(t)(x) represents measurement errors at time t. For a known measurable function v(x) on R-d and a fixed cube D subset of R-d, this paper proposes a linear estimator for the stochastic integral integral(D) v(x)S(x)dx based on space-time observations {Z(t)(x(i)): i = 1,..., n; t = 1,..., T}. Under mild conditions, the asymptotic properties of the mean squared error of the estimator are derived as the spatial distance between spatial sampling locations tends to zero and as time T increases to infinity. Central limit theorems for the estimation error are also studied.
引用
收藏
页码:2246 / 2263
页数:18
相关论文
共 50 条
  • [1] SPACE-TIME STOCHASTIC-PROCESSES
    JOHNSON, DP
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 26 (02) : 203 - 204
  • [2] QUANTUM STOCHASTIC PROCESSES IN A CURVED SPACE-TIME
    ANTONOV, VI
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1978, (12): : 105 - 110
  • [3] Integrability conditions for space-time stochastic integrals: Theory and applications
    Chong, Carsten
    Klueppelberg, Claudia
    [J]. BERNOULLI, 2015, 21 (04) : 2190 - 2216
  • [4] Modeling space-time data using stochastic differential equations
    Duan, Jason A.
    Gelfand, Alan E.
    Sirmans, C. F.
    [J]. BAYESIAN ANALYSIS, 2009, 4 (04): : 733 - 758
  • [5] Modeling Space and Space-Time Directional Data Using Projected Gaussian Processes
    Wang, Fangpo
    Gelfand, Alan E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (508) : 1565 - 1580
  • [6] STOCHASTIC SPACE-TIME
    INGRAHAM, RL
    [J]. NUOVO CIMENTO, 1964, 34 (01): : 182 - +
  • [7] Stochastic calculus and processes in non-commutative space-time
    Mendes, RV
    [J]. SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 205 - 217
  • [8] Using transforms to analyze space-time processes
    Fuentes, Montserrat
    Guttorp, Peter
    Sampson, Paul D.
    [J]. STATISTICAL METHODS FOR SPATIO-TEMPORAL SYSTEMS, 2007, 107 : 77 - 149
  • [9] RANDOM DESIGNS FOR ESTIMATING INTEGRALS OF STOCHASTIC-PROCESSES
    SCHOENFELDER, C
    CAMBANIS, S
    [J]. ANNALS OF STATISTICS, 1982, 10 (02): : 526 - 538
  • [10] SAMPLING DESIGNS FOR ESTIMATING INTEGRALS OF STOCHASTIC-PROCESSES
    BENHENNI, K
    CAMBANIS, S
    [J]. ANNALS OF STATISTICS, 1992, 20 (01): : 161 - 194