Applying deep learning for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France

被引:2
|
作者
Ndikumana, Emile [1 ]
Dinh Ho Tong Minh [1 ]
Baghdadi, Nicolas [1 ]
Courault, Dominique [2 ]
Hossard, Laure [3 ]
机构
[1] Univ Montpellier, IRSTEA, UMR TETIS, F-34093 Montpellier, France
[2] Univ Avignon, INRA, UMR EMMAH 1114, F-84914 Avignon, France
[3] Univ Montpellier, INRA, UMR INNOVAT 0951, F-34060 Montpellier, France
关键词
SAR; Sentinel-1; multi-temporal; land cover map; Recurrent Neural Network; VARIABILITY;
D O I
10.1117/12.2325160
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The aim of this paper is to provide a better understanding of potentialities of the new Sentinel-1 radar images for mapping the different crops in the Camargue region in the South France. The originality relies on deep learning techniques. The analysis is carried out on multitemporal Sentinel-1 data over an area in Camargue, France. 50 Sentinel-1 images processed in order to produce an intensity radar data stack from May 2017 to September 2017. We revealed that even with classical machine learning approaches (K nearest neighbors, random forest, and support vector machine), good performance classification could be achieved with F-measure/Accuracy greater than 86 % and Kappa coefficient better than 0.82. We found that the results of the two deep recurrent neural network (RNN)-based classifiers clearly outperformed the classical approaches. Finally, our analyses of Camargue area results show that the same performance was obtained with two different RNN-based classifiers on the Rice class, which is the most dominant crop of this region, with a F-measure metric of 96 %. These results thus highlight that in the near future, these RNN-based techniques will play an important role in the analysis of remote sensing time series.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France
    Ndikumana, Emile
    Dinh Ho Tong Minh
    Baghdadi, Nicolas
    Courault, Dominique
    Hossard, Laure
    [J]. REMOTE SENSING, 2018, 10 (08)
  • [2] Estimation of Rice Height and Biomass Using Multitemporal SAR Sentinel-1 for Camargue, Southern France
    Ndikumana, Emile
    Dinh Ho Tong Minh
    Hai Thu Dang Nguyen
    Baghdadi, Nicolas
    Courault, Dominique
    Hossard, Laure
    El Moussawi, Ibrahim
    [J]. REMOTE SENSING, 2018, 10 (09)
  • [3] Rice height and biomass estimations using multitemporal SAR Sentinel-1: Camargue case study
    Ndikumana, Emile
    Dinh Ho Tong Minh
    Dang Nguyen Hai Thu
    Baghdadi, Nicolas
    Courault, Dominique
    Hossard, Laure
    El Moussawi, Ibrahim
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [4] Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France
    Bazzi, Hassan
    Baghdadi, Nicolas
    El Hajj, Mohammad
    Zribi, Mehrez
    Dinh Ho Tong Minh
    Ndikumana, Emile
    Courault, Dominique
    Belhouchette, Hatem
    [J]. REMOTE SENSING, 2019, 11 (07)
  • [5] Sentinel-1 Multitemporal SAR Products
    Amitrano, Donato
    Cecinati, Francesca
    Di Martino, Gerardo
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3973 - 3976
  • [6] CHANGE ANALYSIS USING MULTITEMPORAL SENTINEL-1 SAR IMAGES
    Thu Trang Le
    Atto, Abdourrahmane M.
    Trouve, Emmanuel
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4145 - 4148
  • [7] CLASSIFICATION OF WIDE-AREA SAR MOSAICS: DEEP LEARNING APPROACH FOR CORINE BASED MAPPING OF FINLAND USING MULTITEMPORAL SENTINEL-1 DATA
    Antropov, Oleg
    Rauste, Yrjo
    Scepanovic, Sanja
    Ignatenko, Vladimir
    Lonnqvist, Anne
    Praks, Jaan
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4283 - 4286
  • [8] Deep Learning Applications on Multitemporal SAR (Sentinel-1) Image Classification Using Confined Labeled Data: The Case of Detecting Rice Paddy in South Korea
    Jo, Hyun-Woo
    Lee, Sujong
    Park, Eunbeen
    Lim, Chul-Hee
    Song, Cholho
    Lee, Halim
    Ko, Youngjin
    Cha, Sungeun
    Yoon, Hoonjoo
    Lee, Woo-Kyun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (11): : 7589 - 7601
  • [9] Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data
    Marzi, David
    Gamba, Paolo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11789 - 11799
  • [10] ESTIMATING NDVI FROM SENTINEL-1 SAR DATA USING DEEP LEARNING
    Rossberg, Thomas
    Schmitt, Michael
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1412 - 1415