Nonlinear compact localized modes in flux-dressed octagonal-diamond lattice

被引:1
|
作者
Stojanovic, M. G. [1 ]
Guendogdu, S. [2 ,3 ]
Leykam, D. [4 ]
Angelakis, D. G. [4 ,5 ]
Krasic, M. Stojanovic [6 ]
Stepic, M. [1 ]
Maluckov, A. [1 ]
机构
[1] Univ Belgrade, Vinca Inst Nucl Sci, Natl Inst Republ Serbia, COHERENCE, POB 522, Belgrade 11001, Serbia
[2] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon 34126, South Korea
[3] Humboldt Univ, Dept Phys, Newtonstr 15, D-12489 Berlin, Germany
[4] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[5] Tech Univ Crete, Sch Elect & Comp Engn, Khania 73100, Greece
[6] Univ Nis, Fac Technol, Leskovac 16000, Serbia
基金
新加坡国家研究基金会;
关键词
nonlinear compact localized modes; flux-driven topological phase transistions; octagonal-diamond lattice; flatbands; MODULATION INSTABILITY;
D O I
10.1088/1402-4896/ac5357
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tuning the values of artificial flux in the two-dimensional octagonal-diamond lattice drives topological phase transitions, including between singular and non-singular flatbands. We study the dynamical properties of nonlinear compact localized modes that can be continued from linear flatband modes. We show how the stability of the compact localized modes can be tuned by the nonlinearity strength or the applied artificial flux. Our model can be realized using ring resonator lattices or nonlinear waveguide arrays.
引用
收藏
页数:12
相关论文
共 25 条
  • [1] Localized modes in linear and nonlinear octagonal-diamond lattices with two flat bands
    Stojanovic, M. G.
    Krasic, M. Stojanovic
    Maluckov, A.
    Johansson, M.
    Salinas, I. A.
    Vicencio, R. A.
    Stepic, M.
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [2] Compact Topological Edge States in Flux-Dressed Graphenelike Photonic Lattices
    Caceres-Aravena, Gabriel
    Nedi, Milica
    Vildoso, Paloma
    Gligori, Goran
    Petrovic, Jovana
    Maluckov, Aleksandra
    Vicencio, Rodrigo A.
    PHYSICAL REVIEW LETTERS, 2024, 133 (11)
  • [3] Nonlinear localized modes in a one-dimensional diamond-structure lattice
    Zhou, GH
    Xia, QL
    Yan, JR
    ACTA PHYSICA SINICA, 2000, 49 (09) : 1741 - 1746
  • [4] Nonlinear localized modes in a one-dimensional diamond-structure lattice
    Zhou, Guanghui
    Xia, Qinglin
    Yan, Jiaren
    Wuli Xuebao/Acta Physica Sinica, 2000, 49 (09): : 1741 - 1746
  • [5] Induced localized nonlinear modes in an electrical lattice
    Palmero, Faustino
    Cuevas-Maraver, Jesus
    English, Lars Q.
    Li, Weilun
    Chacon, Ricardo
    PHYSICA SCRIPTA, 2019, 94 (06)
  • [6] IMPURITY LOCALIZED MODES OF NONLINEAR LATTICE SYSTEMS
    NAGAHAMA, K
    YAJIMA, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (05) : 1539 - 1549
  • [7] OBSERVATION OF NONLINEAR LOCALIZED MODES IN AN ELECTRICAL LATTICE
    MARQUIE, P
    BILBAULT, JM
    REMOISSENET, M
    PHYSICAL REVIEW E, 1995, 51 (06): : 6127 - 6133
  • [8] Intrinsic localized modes in a nonlinear electrical lattice with saturable nonlinearity
    Shi, W.
    Shige, S.
    Soga, Y.
    Sato, M.
    Sievers, A. J.
    EPL, 2013, 103 (03)
  • [9] SOLITON-LIKE PHONON LOCALIZED MODES IN DIATOMIC NONLINEAR LATTICE CHAIN
    SHI, ZP
    HUANG, GX
    TAO, RB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (13): : 2237 - 2252
  • [10] Nonlinear propagating localized modes in a 2D hexagonal crystal lattice
    Bajars, Janis
    Eilbeck, J. Chris
    Leimkuhler, Benedict
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 301 : 8 - 20