Stirling Pairs of Permutations

被引:1
|
作者
Brualdi, Richard A. [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Permutation; Inversion; Weak Bruhat order; 312-Avoiding permutation;
D O I
10.1007/s00373-020-02172-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stirling permutations are permutations pi of the multiset {1,1,2,2, horizontal ellipsis ,n,n} in which those integers between the two occurrences of an integer are greater than it. We identify a permutation pi of {1,1,2,2, horizontal ellipsis ,n,n} as a pair of permutations (pi 1,pi 2) which we call a Stirling pair. We characterize Stirling pairs using the weak Bruhat order and the notion of a 312-avoiding permutation. We give two algorithms to determine if a pair of permutations is a Stirling pair.
引用
收藏
页码:1145 / 1162
页数:18
相关论文
共 50 条
  • [1] Stirling Pairs of Permutations
    Richard A. Brualdi
    [J]. Graphs and Combinatorics, 2020, 36 : 1145 - 1162
  • [2] Stirling permutations on multisets
    Dzhumadil'daev, Askar
    Yeliussizov, Damir
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 377 - 392
  • [3] Restricted Stirling Permutations
    Callan, David
    Ma, Shi-Mei
    Mansour, Toufik
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (05): : 957 - 978
  • [4] Some statistics on Stirling permutations and Stirling derangements
    Duh, Guan-Huei
    Lin, Yen-Chi Roger
    Ma, Shi-Mei
    Yeh, Yeong-Nan
    [J]. DISCRETE MATHEMATICS, 2018, 341 (09) : 2478 - 2484
  • [5] Stirling permutations, cycle structure of permutations and perfect matchings
    Ma, Shi-Mei
    Yeh, Yeong-Nan
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):
  • [6] Legendre-Stirling permutations
    Egge, Eric S.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) : 1735 - 1750
  • [7] Block patterns in Stirling permutations
    Remmel, Jeffrey B.
    Wilson, Andrew Timothy
    [J]. JOURNAL OF COMBINATORICS, 2015, 6 (1-2) : 179 - 204
  • [8] On the Lucky and Displacement Statistics of Stirling Permutations
    Colmenarejo, Laura
    Elder, Jennifer
    Harry, Kimberly J.
    Smith, Dorian
    Dawkins, Aleyah
    Harris, Pamela E.
    Kara, Selvi
    Tenner, Bridget Eileen
    [J]. JOURNAL OF INTEGER SEQUENCES, 2024, 27 (06)
  • [9] Analysis of Statistics for Generalized Stirling Permutations
    Kuba, Markus
    Panholzer, Alois
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (06): : 875 - 910
  • [10] Descents on quasi-Stirling permutations
    Elizalde, Sergi
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180