LabelMe: A database and web-based tool for image annotation

被引:2164
|
作者
Russell, Bryan C. [1 ]
Torralba, Antonio [1 ]
Murphy, Kevin P. [2 ]
Freeman, William T. [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] Univ British Columbia, Dept Comp Sci & Stat, Vancouver, BC V6T 1Z4, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
database; annotation tool; object recognition; object detection;
D O I
10.1007/s11263-007-0090-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web.
引用
收藏
页码:157 / 173
页数:17
相关论文
共 50 条
  • [1] LabelMe: A Database and Web-Based Tool for Image Annotation
    Bryan C. Russell
    Antonio Torralba
    Kevin P. Murphy
    William T. Freeman
    [J]. International Journal of Computer Vision, 2008, 77 : 157 - 173
  • [2] A portable image annotation tool for web-based anatomy atlases
    Lober, WB
    Brinkley, JF
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1999, : 1108 - 1108
  • [3] Dinosys: An annotation tool for web-based learning
    Desmontils, E
    Jacquin, C
    Simon, L
    [J]. ADVANCES IN WEB-BASED LEARNING - ICWL 2004, 2004, 3143 : 59 - 66
  • [4] CoAT: A Web-based, Collaborative Annotation Tool
    Satybaldiev, Aziret
    Hevesi, Peter
    Hirsch, Marco
    Rey, Vitor Fortes
    Lukowicz, Paul
    [J]. UBICOMP/ISWC'19 ADJUNCT: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2019, : 814 - 818
  • [5] Web-Based Software Tool for Electrocardiogram Annotation
    Stoyanov, Todor
    [J]. CONTEMPORARY METHODS IN BIOINFORMATICS AND BIOMEDICINE AND THEIR APPLICATIONS, 2022, 374 : 322 - 331
  • [6] A Web-based Collaborative Annotation and Consolidation Tool
    Daudert, Tobias
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 7053 - 7059
  • [7] LabelMe: Online Image Annotation and Applications
    Torralba, Antonio
    Russell, Bryan C.
    Yuen, Jenny
    [J]. PROCEEDINGS OF THE IEEE, 2010, 98 (08) : 1467 - 1484
  • [8] A Semantic Web Annotation Tool for a Web-Based Audio Sequencer
    Restagno, Luca
    Akkermans, Vincent
    Rizzo, Giuseppe
    Servetti, Antonio
    [J]. WEB ENGINEERING, ICWE 2011, 2011, 6757 : 289 - 303
  • [9] Annotation Web - An open-source web-based annotation tool for ultrasound images
    Smistad, Erik
    Ostvik, Andreas
    Lovstakken, Lasse
    [J]. INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [10] MedTator: A Serverless Web-based Tool for Corpus Annotation
    He, Huan
    Fu, Sunyang
    Wang, Liwei
    Wen, Andrew
    Liu, Sijia
    Liu, Hongfang
    [J]. 2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 530 - 531