Generalized Rankine-Hugoniot condition and shock solutions for quasilinear hyperbolic systems

被引:10
|
作者
Lin, XB [1 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jdeq.2000.3889
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a quasilinear hyperbolic system, we use the method of vanishing viscosity to construct shock solutions. The solution consists of two regular regions separated by a free boundary (shock). We use Melnikov's integral to obtain a system of differential/algebraic equations that governs the motion of the shock. For Lax shocks in conservation laws, these equations are equivalent to the Rankine-Hugoniot condition. For under compressive shocks in conservation laws, or shocks in non-conservation systems, the Melnikov-type integral obtained in this paper generalizes the Rankine-Hugoniot condition. Under some generic conditions, we show that the initial value problem of shock solutions can be solved as a free boundary problem by the method of characteristics. (C) 2000 Academic Press.
引用
收藏
页码:321 / 354
页数:34
相关论文
共 50 条
  • [1] GENERALIZED MULTI-POLYTROPIC RANKINE-HUGONIOT RELATIONS AND THE ENTROPY CONDITION
    Scherer, Klaus
    Fichtner, Horst
    Fahr, Hans Joerg
    Roeken, Christian
    Kleimann, Jens
    ASTROPHYSICAL JOURNAL, 2016, 833 (01):
  • [2] SHOCK WAVES WITH IRROTATIONAL RANKINE-HUGONIOT CONDITIONS
    Li, Dening
    Zhang, Qingtian
    QUARTERLY OF APPLIED MATHEMATICS, 2024, 82 (04) : 789 - 800
  • [3] A central Rankine-Hugoniot solver for hyperbolic conservation laws
    Jaisankar, S.
    Rao, S. V. Raghurama
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (03) : 770 - 798
  • [4] SOLUTIONS OF THE RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC MAGNETOHYDRODYNAMICS
    CARIOLI, SM
    PHYSICS OF FLUIDS, 1986, 29 (03) : 672 - 675
  • [5] Corrections to the Rankine-Hugoniot Conditions for Curved Shock Waves
    Lancellotti, Carlo
    Yue, Yubei
    PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 2014, 1628 : 68 - 74
  • [6] A PARAMETRIC STUDY OF SLOW SHOCK RANKINE-HUGONIOT SOLUTIONS AND CRITICAL MACH NUMBERS
    EDMISTON, JP
    KENNEL, CF
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1986, 91 (A2): : 1361 - 1372
  • [7] Implications of Generalized Rankine-Hugoniot Conditions for the PUI Population at the Voyager 2 Termination Shock
    Roelof, E. C.
    Krimigis, S. M.
    Mitchell, D. G.
    Decker, R. B.
    Richardson, J. D.
    Gruntman, M.
    Funsten, H. O.
    PICKUP IONS THROUGHOUT THE HELIOSPHERE AND BEYOND, 2010, 1302 : 133 - +
  • [8] From Rankine-Hugoniot Condition to a Constructive Derivation of HDG Methods
    Tan Bui-Thanh
    SPECTRAL AND HIGH ORDER METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS ICOSAHOM 2014, 2015, 106 : 483 - 491
  • [9] MHD RANKINE-HUGONIOT EQUATIONS APPLIED TO EARTHS BOW SHOCK
    MIHALOV, JD
    SONETT, CP
    WOLFE, JH
    JOURNAL OF PLASMA PHYSICS, 1969, 3 : 449 - &
  • [10] EFFECTIVE RANKINE-HUGONIOT CONDITIONS FOR SHOCK WAVES IN PERIODIC MEDIA
    Ketcheson, David, I
    De Luna, Manuel Quezada
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (04) : 1023 - 1040