Physicochemically Stable Polymer-Coupled Oxide Dielectrics for Multipurpose Organic Electronic Applications

被引:99
|
作者
Kim, Se Hyun [1 ]
Jang, Mi [2 ]
Yang, Hoichang [2 ]
Anthony, John E. [3 ]
Park, Chan Eon [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem Engn, Polymer Res Inst, Pohang 790784, South Korea
[2] Inha Univ, Dept Adv Fiber Engn, Inchon 402751, South Korea
[3] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA
关键词
FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; SELF-ASSEMBLED MONOLAYERS; GATE DIELECTRICS; PENTACENE; PERFORMANCE; POLYTHIOPHENE; MORPHOLOGY; DENSITY; GROWTH;
D O I
10.1002/adfm.201002054
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A chemically coupled polymer layer is introduced onto inorganic oxide dielectrics from a dilute chlorosilane-terminated polystyrene (PS) solution. As a result of this surface modification, hydrophilic-oxide dielectrics gain hydrophobic, physicochemically stable properties. On such PS-coupled SiO2 or AlOx dielectrics, various vacuum-and solution-processable organic semiconductors can develop highly ordered crystalline structures that provide higher field-effect mobilities (mu S-FET) than other surface-modified systems, and negligible hysteresis in organic field-effect transistors (OFETs). In particular, the use of PS-coupled AlOx nanodielectrics enables a solution-processable triethylsilylethynyl anthradithiophene OFET to operate with mu(FET) similar to 1.26 cm(2) V-1 s(-1) at a gate voltage below - 1 V. In addition, a complementary metal-oxide semiconductor-like organic inverter with a high voltage gain of approximately 32 was successfully fabricated on a PS-coupled SiO2 dielectric.
引用
收藏
页码:2198 / 2207
页数:10
相关论文
共 43 条
  • [1] Molecular dynamics simulation of polymer-coupled ion transport in the crystalline polymer electrolyte poly(ethylene oxide)3:NaI
    Cheerla, Ramesh
    Krishnan, Marimuthu
    [J]. POLYMER, 2018, 155 : 136 - 145
  • [2] Benzotriazole containing conjugated polymers for multipurpose organic electronic applications
    Balan, Abidin
    Baran, Derya
    Toppare, Levent
    [J]. POLYMER CHEMISTRY, 2011, 2 (05) : 1029 - 1043
  • [3] Air stable organic complementary inverter with high and balance noise margin based on polymer/metal oxide hybrid gate dielectrics
    Huang, Ting-Hsiang
    Lai, Hsin-Cheng
    Tzeng, Bo-Jie
    Pei, Zingway
    [J]. ORGANIC ELECTRONICS, 2012, 13 (08) : 1365 - 1369
  • [4] High-k polymer nanocomposites as gate dielectrics for organic electronics applications
    Lu, Jiongxin
    Moon, Kyoung-Sik
    Wong, C. P.
    [J]. 57TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, 2007 PROCEEDINGS, 2007, : 453 - +
  • [5] Inorganic-organic hybrid materials for polymer electronic applications
    Houbertz, R
    Schulz, J
    Fröhlich, L
    Domann, G
    Popall, M
    [J]. FLEXIBLE ELECTRONICS-MATERIALS AND DEVICE TECHNOLOGY, 2003, 769 : 239 - 244
  • [6] Chemically stable polycyclic aromatic hydrocarbon semiconductors for organic electronic applications
    Briseno, Alejandro
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [7] Realization of electrically stable organic field-effect transistors using simple polymer blended dielectrics
    Kim, Kyunghun
    Hahm, Suk Gyu
    Kim, Yebyeol
    Kim, Sangwon
    Kim, Se Hyun
    Park, Chan Eon
    [J]. ORGANIC ELECTRONICS, 2015, 21 : 111 - 116
  • [8] Photo-Curable Polymer Blend Dielectrics for Advancing Organic Field-Effect Transistor Applications
    Kim, Se Hyun
    Hong, Kipyo
    Jang, Mi
    Jang, Jaeyoung
    Anthony, John E.
    Yang, Hoichang
    Park, Chan Eon
    [J]. ADVANCED MATERIALS, 2010, 22 (43) : 4809 - +
  • [9] Inkjet-printed polymer-fullerene blends for organic electronic applications
    Neophytou, M.
    Cambarau, W.
    Hermerschmidt, F.
    Waldauf, C.
    Christodoulou, C.
    Pacios, R.
    Choulis, S. A.
    [J]. MICROELECTRONIC ENGINEERING, 2012, 95 : 102 - 106
  • [10] Electrically stable polymer-only dielectrics for organic field-effect transistors with low gate leakage current
    Nam, Sooji
    Jeong, Yong Jin
    Jang, Jaeyoung
    [J]. ORGANIC ELECTRONICS, 2020, 85