Mexican hat wavelet transform of generalized functions in G′ spaces

被引:0
|
作者
Rawat, Aparna [1 ]
Singh, Abhishek [1 ]
机构
[1] Banasthali Vidyapith, Dept Math & Stat, Banasthali 304022, India
关键词
Mexican hat wavelet transform (MHWT); wavelet transform; Weierstrass transform; generalized functions; FOURIER-ANALYSIS; MULTIPLICATION; CONVOLUTION;
D O I
10.1007/s12044-021-00627-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Mexican hat wavelet transform (MHWT) of generalized function space G '. The space G ' consists of purely entire functions with certain advance conditions developed by Howell (J. Math. Anal. Appl.180 (1993) 79-92; 187 (1994). An inversion formula is also established.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Mexican hat wavelet Stieltjes transform
    Singh, Abhishek
    Rawat, Aparna
    [J]. FILOMAT, 2023, 37 (09) : 2717 - 2730
  • [2] Mexican hat wavelet transform of distributions
    Pathak, R. S.
    Singh, Abhishek
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (06) : 468 - 483
  • [3] Distributional Mexican hat wavelet transform
    Abhishek Singh
    [J]. The Journal of Analysis, 2020, 28 : 533 - 544
  • [4] Distributional Mexican hat wavelet transform
    Singh, Abhishek
    [J]. JOURNAL OF ANALYSIS, 2020, 28 (02): : 533 - 544
  • [5] Wavelet transform of generalized functions in K′{Mp} spaces
    R S PATHAK
    ABHISHEK SINGH
    [J]. Proceedings - Mathematical Sciences, 2016, 126 : 213 - 226
  • [6] Wavelet transform of generalized functions in K′ {Mp} spaces
    Pathak, R. S.
    Singh, Abhishek
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 213 - 226
  • [7] Representation theorems for the Mexican hat wavelet transform
    Singh, Abhishek
    Raghuthaman, Nikhila
    Rawat, Aparna
    Singh, Jagdev
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 3914 - 3924
  • [8] Three-dimensional profilometry based on mexican hat wavelet transform
    Zhou, Xiang
    Zhao, Hong
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2009, 29 (01): : 197 - 202
  • [9] The Obrechkoff transform on spaces of generalized functions
    Cruz-Báez, DI
    Rodríguez, J
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (01) : 141 - 155
  • [10] Wavelet transform for functions with values in UMD spaces
    Kaiser, Cornelia
    Weis, Lutz
    [J]. STUDIA MATHEMATICA, 2008, 186 (02) : 101 - 126