INTERPRETABLE MACHINE LEARNING OF HIGH-DIMENSIONAL AGING HEALTH TRAJECTORIES

被引:0
|
作者
Farrell, Spencer [1 ]
Mitnitski, Arnold [1 ]
Rockwood, Kenneth [1 ]
Rutenberg, Andrew [1 ]
机构
[1] Dalhousie Univ, Halifax, NS, Canada
关键词
D O I
暂无
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
引用
收藏
页码:672 / 672
页数:1
相关论文
共 50 条
  • [1] Interpretable machine learning for high-dimensional trajectories of aging health
    Farrell, Spencer
    Mitnitski, Arnold
    Rockwood, Kenneth
    Rutenberg, Andrew
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (01)
  • [2] Investigating trajectories of aging using high-dimensional phenotyping in mice
    Michael R. MacArthur
    Sarah J. Mitchell
    [J]. Lab Animal, 2023, 52 : 61 - 62
  • [3] Investigating trajectories of aging using high-dimensional phenotyping in mice
    MacArthur, Michael R.
    Mitchell, Sarah J.
    [J]. LAB ANIMAL, 2023, 52 (03) : 61 - 62
  • [4] Interpretable Approximation of High-Dimensional Data
    Potts, Daniel
    Schmischke, Michael
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (04): : 1301 - 1323
  • [5] Bayesian evolutionary hypernetworks for interpretable learning from high-dimensional data
    Kim, Soo-Jin
    Ha, Jung-Woo
    Kim, Heebal
    Zhang, Byoung-Tak
    [J]. APPLIED SOFT COMPUTING, 2019, 81
  • [6] Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values
    Antipov, Evgeny A.
    Pokryshevskaya, Elena B.
    [J]. JOURNAL OF REVENUE AND PRICING MANAGEMENT, 2020, 19 (05) : 355 - 364
  • [7] Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values
    Evgeny A. Antipov
    Elena B. Pokryshevskaya
    [J]. Journal of Revenue and Pricing Management, 2020, 19 : 355 - 364
  • [8] Hierarchical reinforcement learning of low-dimensional subgoals and high-dimensional trajectories
    Morimoto, J
    Doya, K
    [J]. ICONIP'98: THE FIFTH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING JOINTLY WITH JNNS'98: THE 1998 ANNUAL CONFERENCE OF THE JAPANESE NEURAL NETWORK SOCIETY - PROCEEDINGS, VOLS 1-3, 1998, : 850 - 853
  • [9] Machine learning for high-dimensional dynamic stochastic economies
    Scheidegger, Simon
    Bilionis, Ilias
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2019, 33 : 68 - 82
  • [10] Learning and planning high-dimensional physical trajectories via structured Lagrangians
    Vernaza, Paul
    Lee, Daniel D.
    Yi, Seung-Joon
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 846 - 852