ON THE PARISIAN RUIN OF THE DUAL LEVY RISK MODEL

被引:3
|
作者
Yang, Chen [1 ]
Sendova, Kristian P. [2 ]
Li, Zhong [3 ]
机构
[1] Wuhan Univ, Econ & Management Sch, Wuhan 430072, Hubei, Peoples R China
[2] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
[3] Univ Int Business & Econ, Sch Insurance & Econ, Beijing 100029, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Parisian ruin; Levy process; dual risk model; Gerber-Shiu function; OPTIMAL DIVIDEND PROBLEM; CAPITAL INJECTIONS; TIME; PROBABILITY;
D O I
10.1017/jpr.2017.59
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we investigate the Parisian ruin problem of the general dual Levy risk model. Unlike the usual concept of ultimate ruin, allowing the surplus level to be negative within a prespecified period indicates that the deficit at Parisian ruin is not necessarily equal to zero. Hence, we consider a Gerber-Shiu type expected discounted penalty function at the Parisian ruin and obtain an explicit expression for this function under the dual Levy risk model. As particular cases, we calculate the Parisian ruin probability and the expected discounted kth moments of the deficit at the Parisian ruin for the compound Poisson dual risk model and a drift-diffusion model. Numerical examples are given to illustrate the behavior of Parisian ruin and the expected discounted deficit at Parisian ruin.
引用
收藏
页码:1193 / 1212
页数:20
相关论文
共 50 条
  • [1] Parisian ruin with a threshold dividend strategy under the dual Levy risk model
    Yang, Chen
    Sendova, Kristina P.
    Li, Zhong
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2020, 90 : 135 - 150
  • [2] Parisian ruin for a refracted Levy process
    Lkabous, Mohamed Amine
    Czarna, Irmina
    Renaud, Jean-Francois
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2017, 74 : 153 - 163
  • [3] RUIN PROBABILITY WITH PARISIAN DELAY FOR A SPECTRALLY NEGATIVE LEVY RISK PROCESS
    Czarna, Irmina
    Palmowski, Zbigniew
    [J]. JOURNAL OF APPLIED PROBABILITY, 2011, 48 (04) : 984 - 1002
  • [4] Discounted penalty function at Parisian ruin for Levy insurance risk process
    Loeffen, R.
    Palmowski, Z.
    Surya, B. A.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2018, 83 : 190 - 197
  • [5] A note on Parisian ruin with an ultimate bankruptcy level for Levy insurance risk processes
    Czarna, Irmina
    Renaud, Jean-Francois
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 113 : 54 - 61
  • [6] GERBER-SHIU DISTRIBUTION AT PARISIAN RUIN FOR LEVY INSURANCE RISK PROCESSES
    Baurdoux, Erik J.
    Carlos Pardo, Juan
    Luis Perez, Jose
    Renaud, Jean-Francois
    [J]. JOURNAL OF APPLIED PROBABILITY, 2016, 53 (02) : 572 - 584
  • [7] Parisian ruin in a discrete-time Markov-modulated dual risk model
    Kim, Bara
    Kim, Jeongsim
    Yoo, Hyunjoo
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 169
  • [8] The joint distribution of the Parisian ruin time and the number of claims until Parisian ruin in the classical risk model
    Czarn, Irmina
    Li, Yanhong
    Palmowski, Zbigniew
    Zhao, Chunming
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 499 - 514
  • [9] Parisian ruin for the dual risk process in discrete-time
    Palmowski Z.
    Ramsden L.
    Papaioannou A.D.
    [J]. European Actuarial Journal, 2018, 8 (1) : 197 - 214
  • [10] Parisian ruin probability for spectrally negative Levy processes
    Loeffen, Ronnie
    Czarna, Irmina
    Palmowski, Zbigniew
    [J]. BERNOULLI, 2013, 19 (02) : 599 - 609