Market complete option valuation using a Jarrow-Rudd pricing tree with skewness and kurtosis

被引:5
|
作者
Hu, Yuan [1 ]
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
Shirvani, Abootaleb [1 ,2 ]
Fabozzi, Frank J. [3 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
[2] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[3] EDHEC Business Sch, Finance Grp, 393-400 Promenade Anglais BP3116, F-06202 Nice 3, France
来源
关键词
Jarrow-Rudd binomial option pricing; Skew random walk; Cherny-Shiryaev-Yor invariance principle; Hedging transaction cost; DISCRETE-TIME; FUNDAMENTAL THEOREM; OPTIMAL REPLICATION; MODEL; PORTFOLIO; PRICES; COSTS;
D O I
10.1016/j.jedc.2022.104345
中图分类号
F [经济];
学科分类号
02 ;
摘要
Applying the Cherny-Shiryaev-Yor invariance principle, we introduce a generalized Jarrow Rudd (GJR) option pricing model with uncertainty driven by a skew random walk. The GJR pricing tree exhibits skewness and kurtosis in both the natural and risk-neutral world. We construct implied surfaces for the parameters determining the GJR tree. Motivated by Merton's pricing tree incorporating transaction costs, we extend the GJR pricing model to include a hedging cost. We demonstrate ways to fit the GJR pricing model to a market driver that influences the price dynamics of the underlying asset. We supplement our findings with numerical examples. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 36 条