Multi-task Feature Learning for Social Recommendation

被引:0
|
作者
Zhang, Yuanyuan [1 ]
Sun, Maosheng [2 ]
Zhang, Xiaowei [1 ]
Zhang, Yonglong [1 ]
机构
[1] Yangzhou Univ, Sch Informat Engn, Yangzhou, Jiangsu, Peoples R China
[2] Yangzhou Univ, Off Informationizat Construct & Adm, Yangzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommender systems; Social relationship; Knowledge graph; Multi-task;
D O I
10.1007/978-981-16-6471-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of the recommender system is to recommend personalized products or information for users. It is widely used in many scenarios to deal with information overload problems to improve user experience. As an existing popular recommendation method, collaborative filtering usually suffers from data sparsity and cold start problems. Therefore, researchers usually make use of side information, such as contexts or item attributes, to solve the problem and improve the performance of the recommender systems. In this paper, we consider social relationship and knowledge graph as side information, and propose a multi-task feature learning model, Social-MKR, which consists of recommendation module and knowledge graph embedding (KGE) module. In recommendation module, we build the social network among users based on the user-item interactions, and conduct the GCN model to obtain the specific user's neighborhood representation, which can be used as the input of the recommendation module. Like MKR, the KGE module is used to assist recommendation module by a cross&compression unit, which can learn high-order hidden features between items and entities. Extensive experiments on real-world datasets (e.g., movie,book and news) demonstrate that Social-MKR outperforms several state-of-the-art methods.
引用
收藏
页码:240 / 252
页数:13
相关论文
共 50 条
  • [1] Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation
    Wang, Hongwei
    Zhang, Fuzheng
    Zhao, Miao
    Li, Wenjie
    Xie, Xing
    Guo, Minyi
    [J]. WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 2000 - 2010
  • [2] Music recommendation algorithms based on knowledge graph and multi-task feature learning
    Liu, Xinqiao
    Yang, Zhisheng
    Cheng, Jinyong
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [3] Convex multi-task feature learning
    Andreas Argyriou
    Theodoros Evgeniou
    Massimiliano Pontil
    [J]. Machine Learning, 2008, 73 : 243 - 272
  • [4] Multi-Task Feature Interaction Learning
    Lin, Kaixiang
    Xu, Jianpeng
    Baytas, Inci M.
    Ji, Shuiwang
    Zhou, Jiayu
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1735 - 1744
  • [5] Convex multi-task feature learning
    Argyriou, Andreas
    Evgeniou, Theodoros
    Pontil, Massimiliano
    [J]. MACHINE LEARNING, 2008, 73 (03) : 243 - 272
  • [6] Learning Task Relational Structure for Multi-Task Feature Learning
    Wang, De
    Nie, Feiping
    Huang, Heng
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1239 - 1244
  • [7] Multi-Stage Multi-Task Feature Learning
    Gong, Pinghua
    Ye, Jieping
    Zhang, Changshui
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2979 - 3010
  • [8] Service recommendation based on contrastive learning and multi-task learning
    Yu, Ting
    Zhang, Lihua
    Liu, Hailin
    Liu, Hongbing
    Wang, Jiaojiao
    [J]. COMPUTER COMMUNICATIONS, 2024, 213 : 285 - 295
  • [9] Multi-task Attribute Joint Feature Learning
    Chang, Lu
    Fang, Yuchun
    Jiang, Xiaoda
    [J]. BIOMETRIC RECOGNITION, CCBR 2015, 2015, 9428 : 193 - 200
  • [10] Prototype Feature Extraction for Multi-task Learning
    Xin, Shen
    Jiao, Yuhang
    Long, Cheng
    Wang, Yuguang
    Wang, Xiaowei
    Yang, Sen
    Liu, Ji
    Zhang, Jie
    [J]. PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2472 - 2481