Deep Learning Based Analysis of Histopathological Images of Breast Cancer

被引:131
|
作者
Xie, Juanying [1 ]
Liu, Ran [1 ]
Luttrell, Joseph [2 ]
Zhang, Chaoyang [2 ]
机构
[1] Shaanxi Normal Univ, Sch Comp Sci, Xian, Shaanxi, Peoples R China
[2] Univ Southern Mississippi, Sch Comp Sci & Comp Engn, Hattiesburg, MS 39406 USA
基金
中国国家自然科学基金;
关键词
histopathological images; breast cancer; deep convolutional neural networks; autoencoder; transfer learning; classification; clustering; DIAGNOSIS; CLASSIFICATION; VALIDATION;
D O I
10.3389/fgene.2019.00080
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Breast cancer is associated with the highest morbidity rates for cancer diagnoses in the world and has become a major public health issue. Early diagnosis can increase the chance of successful treatment and survival. However, it is a very challenging and time-consuming task that relies on the experience of pathologists. The automatic diagnosis of breast cancer by analyzing histopathological images plays a significant role for patients and their prognosis. However, traditional feature extraction methods can only extract some low-level features of images, and prior knowledge is necessary to select useful features, which can be greatly affected by humans. Deep learning techniques can extract high-level abstract features from images automatically. Therefore, we introduce it to analyze histopathological images of breast cancer via supervised and unsupervised deep convolutional neural networks. First, we adapted Inception_V3 and Inception_ResNet_V2 architectures to the binary and multi-class issues of breast cancer histopathological image classification by utilizing transfer learning techniques. Then, to overcome the influence from the imbalanced histopathological images in subclasses, we balanced the subclasses with Ductal Carcinoma as the baseline by turning images up and down, right and left, and rotating them counterclockwise by 90 and 180 degrees. Our experimental results of the supervised histopathological image classification of breast cancer and the comparison to the results from other studies demonstrate that Inception_V3 and Inception_ResNet_V2 based histopathological image classification of breast cancer is superior to the existing methods. Furthermore, these findings show that Inception_ResNet_V2 network is the best deep learning architecture so far for diagnosing breast cancers by analyzing histopathological images. Therefore, we used Inception_ResNet_V2 to extract features from breast cancer histopathological images to perform unsupervised analysis of the images. We also constructed a new autoencoder network to transform the features extracted by Inception_ResNet_V2 to a low dimensional space to do clustering analysis of the images. The experimental results demonstrate that using our proposed autoencoder network results in better clustering results than those based on features extracted only by Inception_ResNet_V2 network. All of our experimental results demonstrate that Inception_ResNet_V2 network based deep transfer learning provides a new means of performing analysis of histopathological images of breast cancer.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Breast Cancer Histopathological Images Segmentation Using Deep Learning
    Drioua, Wafaa Rajaa
    Benamrane, Nacera
    Sais, Lakhdar
    [J]. SENSORS, 2023, 23 (17)
  • [2] Deep learning for colon cancer histopathological images analysis
    Ben Hamida, A.
    Devanne, M.
    Weber, J.
    Truntzer, C.
    Derangere, V
    Ghiringhelli, F.
    Forestier, G.
    Wemmert, C.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
  • [3] Evaluating Interpretability in Deep Learning using Breast Cancer Histopathological Images
    Macedo, Daniel C.
    de Lima, John W. S.
    Santos, Vinicius D.
    Moraes, Tasso L. O.
    Neto, Fernando M. P.
    Arrais, Nicksson
    Vinuto, Tiago
    Lucena, Joao
    [J]. 2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 276 - 281
  • [4] Classification of Histopathological Images from Breast Cancer Patients Using Deep Learning: A Comparative Analysis
    Thalakottor L.A.
    Shirwaikar R.D.
    Pothamsetti P.T.
    Mathews L.M.
    [J]. Critical Reviews in Biomedical Engineering, 2023, 51 (04) : 41 - 62
  • [5] Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images
    Wahab, Noorul
    Khan, Asifullah
    Lee, Yeon Soo
    [J]. MICROSCOPY, 2019, 68 (03) : 216 - 233
  • [6] Breast Cancer Detection from Histopathological Images using Deep Learning and Transfer Learning
    Muntean, Cristina H.
    Chowkkar, Mansi
    [J]. PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022, 2022, : 164 - 169
  • [7] Classification of Histopathological Images for Early Detection of Breast Cancer Using Deep Learning
    Senan, Ebrahim Mohammed
    Alsaade, Fawaz Waselallah
    Al-mashhadani, Mohammed Ibrahim Ahmed
    Aldhyani, Theyazn H. H.
    Al-Adhaileh, Mosleh Hmoud
    [J]. JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (03): : 323 - 329
  • [8] Deep Learning and Color Variability in Breast Cancer Histopathological Images - a Preliminary Study
    Lee, Gobert
    Bajger, Mariusz
    Clark, Kevin
    [J]. 14TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI 2018), 2018, 10718
  • [9] Breast Cancer Classification From Histopathological Images Using Patch-Based Deep Learning Modeling
    Hirra, Irum
    Ahmad, Mubashir
    Hussain, Ayaz
    Ashraf, M. Usman
    Saeed, Iftikhar Ahmed
    Qadri, Syed Furqan
    Alghamdi, Ahmed M.
    Alfakeeh, Ahmed S.
    [J]. IEEE ACCESS, 2021, 9 : 24273 - 24287
  • [10] BREAST CANCER DETECTION AND CLASSIFICATION USING HISTOPATHOLOGICAL IMAGES BASED ON OPTIMIZATION-ENABLED DEEP LEARNING
    Salim, Samla
    Sarath, R.
    [J]. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2024, 36 (01):