A Fitzpatrick algorithm for multivariate rational interpolation

被引:3
|
作者
Xia, Peng [1 ]
Zhang, Shugong [1 ]
Lei, Na [1 ]
机构
[1] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Sch Math, Changchun 130012, Peoples R China
关键词
Fitzpatrick algorithm; Rational interpolation; Grobner basis; Neville-like algorithm; CONTINUED FRACTIONS;
D O I
10.1016/j.cam.2011.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first apply the Fitzpatrick algorithm to osculatory rational interpolation. Then based on a Fitzpatrick algorithm, we present a Neville-like algorithm for Cauchy interpolation. With this algorithm, we can determine the value of the interpolating function at a single point without computing the rational interpolating function. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:5222 / 5231
页数:10
相关论文
共 50 条
  • [1] The Fitzpatrick-Neville-type algorithm for multivariate vector-valued osculatory rational interpolation
    Peng Xia
    Shugong Zhang
    Na Lei
    Zhangyong Kim
    [J]. Journal of Systems Science and Complexity, 2015, 28 : 222 - 242
  • [2] The Fitzpatrick-Neville-type algorithm for multivariate vector-valued osculatory rational interpolation
    Xia Peng
    Zhang Shugong
    Lei Na
    Kim Zhangyong
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2015, 28 (01) : 222 - 242
  • [3] The Fitzpatrick-Neville-Type Algorithm for Multivariate Vector-Valued Osculatory Rational Interpolation
    XIA Peng
    ZHANG Shugong
    LEI Na
    KIM Zhangyong
    [J]. Journal of Systems Science & Complexity, 2015, 28 (01) : 222 - 242
  • [4] The Neville-like form of the Fitzpatrick algorithm for rational interpolation
    Peng Xia
    Shugong Zhang
    Na Lei
    [J]. Numerical Algorithms, 2012, 61 : 105 - 120
  • [5] The Neville-like form of the Fitzpatrick algorithm for rational interpolation
    Xia, Peng
    Zhang, Shugong
    Lei, Na
    [J]. NUMERICAL ALGORITHMS, 2012, 61 (01) : 105 - 120
  • [6] The Bulirsch-Stoer algorithm for multivariate rational interpolation
    Xia, Peng
    Dong, Tian
    Zhang, Shugong
    Lei, Na
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7698 - 7710
  • [7] MULTIVARIATE RATIONAL INTERPOLATION
    CUYT, AAM
    VERDONK, BM
    [J]. COMPUTING, 1985, 34 (01) : 41 - 61
  • [8] MULTIVARIATE RATIONAL INTERPOLATION - RECONSTRUCTION OF RATIONAL FUNCTIONS
    MOLLER, HM
    [J]. MULTIVARIATE APPROXIMATION THEORY IV, 1989, 90 : 249 - 256
  • [9] UNATTAINABLE POINTS IN MULTIVARIATE RATIONAL INTERPOLATION
    ALLOUCHE, H
    CUYT, A
    [J]. JOURNAL OF APPROXIMATION THEORY, 1993, 72 (02) : 159 - 173
  • [10] Multivariate rational interpolation of scattered data
    Becuwe, S
    Cuyt, A
    Verdonk, B
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 204 - 213