Floating point computation of cycle time for min-max functions

被引:0
|
作者
Cheng, YP [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a floating point variant FPCalcCycleTime of the CalcCycleTime algorithm for computing the cycle time of min-max functions. The computation is done by first computing the spectral radius of the function, and then recursively calling itself to compute the cycle time of the reduced function. The original CalcCycleTime algorithm requires all the parameters to be integers, whereas FPCalcCycleTime is able to deal with floating point parameters. This feature makes FPCalcCycleTime well suited for engineering applications.
引用
收藏
页码:989 / 992
页数:4
相关论文
共 50 条
  • [1] Cycle time assignment of min-max systems
    Tao, YG
    Chen, WD
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (18) : 1790 - 1799
  • [2] A constructive fixed point theorem for min-max functions
    Cochet-Terrasson, J
    Gaubert, S
    Gunawardena, J
    [J]. DYNAMICS AND STABILITY OF SYSTEMS, 1999, 14 (04): : 407 - 433
  • [3] On min-max cycle bases
    Galbiati, G
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2001, 2223 : 116 - 123
  • [4] Independent Cycle Time Assignment for Min-max Systems
    Wen-De Chen1 Yue-Gang Tao2
    [J]. Machine Intelligence Research, 2010, (02) : 254 - 260
  • [5] Independent cycle time assignment for min-max systems
    Chen W.-D.
    Tao Y.-G.
    Yu H.-N.
    [J]. International Journal of Automation and Computing, 2010, 7 (2) : 254 - 260
  • [6] Min-max computation tree logic
    Dasgupta, P
    Chakrabarti, PP
    Deka, JK
    Sankaranarayanan, S
    [J]. ARTIFICIAL INTELLIGENCE, 2001, 127 (01) : 137 - 162
  • [7] On the cycle time of non-autonomous min-max systems
    Cheng, YP
    Zheng, DZ
    [J]. WODES'02: SIXTH INTERNATIONAL WORKSHOP ON DISCRETE EVENT SYSTEMS, PROCEEDINGS, 2002, : 191 - 196
  • [8] A Min-Max Problem for the Computation of the Cycle Time Lower Bound in Interval-Based Time Petri Nets
    Bernardi, Simona
    Campos, Javier
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2013, 43 (05): : 1167 - 1181
  • [9] On Topological Properties of Min-Max Functions
    Dominik Dorsch
    Hubertus Th. Jongen
    Vladimir Shikhman
    [J]. Set-Valued and Variational Analysis, 2011, 19 : 237 - 253
  • [10] On Topological Properties of Min-Max Functions
    Dorsch, Dominik
    Jongen, Hubertus Th.
    Shikhman, Vladimir
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2011, 19 (02) : 237 - 253