3-D Poststack Seismic Data Compression With a Deep Autoencoder

被引:3
|
作者
Schiavon, Ana Paula [1 ]
Ribeiro, Kevyn [1 ]
Navarro, Joao Paulo [2 ]
Vieira, Marcelo Bernardes [1 ]
Cruz e Silva, Pedro Mario [2 ]
机构
[1] Univ Fed Juiz de Fora UFJF, Dept Ciencia Comp, BR-36036900 Juiz De Fora, Brazil
[2] NVIDIA, BR-04576020 Sao Paulo, Brazil
关键词
Bit rate; Data compression; Task analysis; Image coding; Decoding; Convolution; Training; 3-D poststack data; autoencoder; deep learning; seismic data compression;
D O I
10.1109/LGRS.2020.3028023
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We approach the problem of 3-D poststack seismic data compression by training a model based on a deep autoencoder. Our network architecture is trained to consider the similarity between 3-D seismic sections drawn from one or multiple seismic volumes. A whole seismic volume is compressed with the latent representations of each of its composing volumetric sections. The goal is to compress the seismic data at very low bit rates with high-quality reconstruction. Our model is suitable for training general compressors from multiple seismic surveys or for specialized compression of a single seismic volume. Results show that our method can compress seismic data with extremely low bit rates, below 0.3 bits-per-voxel (bpv) while yielding peak signal-to-noise ratio (PSNR) values over 40 dB.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Composite loss function for 3-D poststack seismic data compression
    Ribeiro, Kevyn Swhants dos Santos
    Vieira, Marcelo Bernardes
    Villela, Saulo Moraes
    Renhe, Marcelo Caniato
    Pedrini, Helio
    Navarro, Joao Paulo
    [J]. COMPUTERS & GEOSCIENCES, 2024, 189
  • [2] DTAE: Deep Tensor Autoencoder for 3-D Seismic Data Interpolation
    Qian, Feng
    Liu, Zhangbo
    Wang, Yan
    Liao, Songjie
    Pan, Shengli
    Hu, Guangmin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Poststack Seismic Data Denoising Based on 3-D Convolutional Neural Network
    Liu, Dawei
    Wang, Wei
    Wang, Xiaokai
    Wang, Cheng
    Pei, Jiangyun
    Chen, Wenchao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1598 - 1629
  • [4] Poststack Seismic Data Compression Using a Generative Adversarial Network
    Ribeiro, Kevyn Swhants Dos Santos
    Schiavon, Ana Paula
    Navarro, Joao Paulo
    Vieira, Marcelo Bernardes
    Villela, Saulo Moraes
    E Silva, Pedro Mario Cruz
    [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [5] Poststack Seismic Data Compression Using a Generative Adversarial Network
    dos Santos Ribeiro, Kevyn Swhants
    Schiavon, Ana Paula
    Navarro, Joao Paulo
    Vieira, Marcelo Bernardes
    Villela, Saulo Moraes
    Cruz E Silva, Pedro Mario
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] Noncausal spatial prediction filtering for random noise reduction on 3-D poststack data
    Gülünay, N
    [J]. GEOPHYSICS, 2000, 65 (05) : 1641 - 1653
  • [7] 3-D Poststack Migration Using the Adjoint Operator of Modeling
    Yang, Qiqiang
    [J]. Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), 2016, 77 : 393 - 396
  • [8] 3-D seismic data for geohazards assessment
    Gafford, WT
    [J]. SEA TECHNOLOGY, 1996, 37 (10) : 23 - &
  • [9] Data compression - 3-D over the Web
    Stikeman, A
    [J]. TECHNOLOGY REVIEW, 2000, 103 (06): : 30 - 30
  • [10] Regularized deep learning for unsupervised random noise attenuation in poststack seismic data
    Song, Chengyun
    Guo, Shutao
    Xiong, Chuanchao
    Tuo, Jiying
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2024, 21 (01) : 60 - 67