Examining the effect of the secondary flow-field on polymer electrolyte fuel cells using X-ray computed radiography and computational modelling

被引:16
|
作者
Kulkarni, Nivedita [1 ]
Meyer, Quentin [1 ]
Hack, Jennifer [1 ]
Jervis, Rhodri [1 ]
Iacoviello, Francesco [1 ]
Ronaszegi, Krisztian [1 ]
Adcock, Paul [2 ]
Shearing, Paul R. [1 ]
Brett, Daniel J. L. [1 ]
机构
[1] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
[2] Intelligent Energy, Charnwood Bldg Holywell Pk,Ashby Rd, Loughborough LE11 3GB, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Secondary flow-field; Manufacturing tolerance; Gas diffusion layer compression; Computational modelling; X-ray radiography; PROTON-EXCHANGE MEMBRANE; DEAD-ENDED-ANODE; CFD MODEL; WATER DISTRIBUTION; OHMIC RESISTANCE; BIPOLAR PLATES; PART I; DIFFUSION; COMPRESSION; TRANSPORT;
D O I
10.1016/j.ijhydene.2018.11.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flow-fields are key factors in determining the operation of fuel cells. While extensive work has been conducted to develop and optimise the reactant flow and current collection performance of polymer electrolyte membrane fuel cell (PEMFC) components, there is a factor that remains largely unaccounted for. Depending on how a membrane electrode assembly (MEA) is incorporated into a cell, there will often be a small gap between the edge of the gas diffusion layer (GDL) and the seal or bipolar plate. This gap acts as a 'secondary flow-field' (SFF) that can bypass or affect/augment the conventional or 'primary flow-field'. Understanding how this affects performance (either positively or adversely) is essential for holistic flow-field design. This paper describes the issues associated with the SFF, examines how cell compression affects its width due to lateral expansion of the GDL and discusses the results of a 3-D computational model that investigates the effect of the SFF during dead-ended anode (DEA) operation for a fuel cell without a macroscopic (conventional) anode flow-field. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1139 / 1150
页数:12
相关论文
共 50 条
  • [1] Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques
    Hontañón, E
    Escudero, MJ
    Bautista, C
    García-Ybarra, PL
    Daza, L
    JOURNAL OF POWER SOURCES, 2000, 86 (1-2) : 363 - 368
  • [2] Multi-length scale characterization of compression on metal foam flow-field based fuel cells using X-ray computed tomography and neutron radiography
    Wu, Y.
    Lu, X.
    Cho, J. I. S.
    Rasha, L.
    Whiteley, M.
    Neville, T. P.
    Ziesche, R.
    Kardjilov, N.
    Markotter, H.
    Manke, I.
    Zhang, X.
    Shearing, P. R.
    Brett, D. J. L.
    ENERGY CONVERSION AND MANAGEMENT, 2021, 230
  • [3] Effect of serpentine flow-field design on the water management of polymer electrolyte fuel cells: An in-operando neutron radiography study
    Wu, Y.
    Cho, J. I. S.
    Neville, T. P.
    Meyer, Q.
    Ziesche, R.
    Boillat, P.
    Cochet, M.
    Shearing, P. R.
    Brett, D. J. L.
    JOURNAL OF POWER SOURCES, 2018, 399 : 254 - 263
  • [4] Characterization of water management in metal foam flow-field based polymer electrolyte fuel cells using in-operando neutron radiography
    Wu, Y.
    Cho, J. I. S.
    Whiteley, M.
    Rasha, L.
    Neville, T. P.
    Ziesche, R.
    Xu, R.
    Owen, R.
    Kulkarni, N.
    Hack, J.
    Maier, M.
    Kardjilov, N.
    Markoetter, H.
    Manke, I.
    Wang, F. R.
    Shearing, P. R.
    Brett, D. J. L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (03) : 2195 - 2205
  • [5] In-situ synchrotron X-ray radiography on high temperature polymer electrolyte fuel cells
    Maier, Wiebke
    Arlt, Tobias
    Wannek, Christoph
    Manke, Ingo
    Riesemeier, Heinrich
    Krueger, Philipp
    Scholta, Joachim
    Lehnert, Werner
    Banhart, John
    Stolten, Detlef
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) : 1436 - 1438
  • [6] Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells
    Kumar, A
    Reddy, RG
    JOURNAL OF POWER SOURCES, 2003, 113 (01) : 11 - 18
  • [7] Identifying in operando changes in membrane hydration in polymer electrolyte membrane fuel cells using synchrotron X-ray radiography
    Banerjee, R.
    Ge, N.
    Han, C.
    Lee, J.
    George, M. G.
    Liu, H.
    Muirhead, D.
    Shrestha, P.
    Bazylak, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (20) : 9757 - 9769
  • [8] Electro-thermal mapping of polymer electrolyte membrane fuel cells with a fractal flow-field
    Bethapudi, V. S.
    Hack, J.
    Hinds, G.
    Shearing, P. R.
    Brett, D. J. L.
    Coppens, M-O
    ENERGY CONVERSION AND MANAGEMENT, 2021, 250
  • [9] Fuel crossover and internal current in polymer electrolyte membrane fuel cell from water visualization using X-ray radiography
    Kim, Jongrok
    Je, Junho
    Kaviany, Massoud
    Son, Sang Young
    Kim, MooHwan
    JOURNAL OF POWER SOURCES, 2011, 196 (20) : 8398 - 8401
  • [10] Effect of grayscale threshold on X-ray computed tomography reconstruction of gas diffusion layers in polymer electrolyte membrane fuel cells
    Li, Huarui
    Qiao, Tingqiang
    Ding, Xiaoyu
    HELIYON, 2024, 10 (07)