Resumable Load Data Compression in Smart Grids

被引:64
|
作者
Unterweger, Andreas [1 ,2 ]
Engel, Dominik [2 ]
机构
[1] Salzburg Univ, Dept Comp Sci, A-5020 Salzburg, Austria
[2] Salzburg Univ Appl Sci, Josef Ressel Ctr User Centr Smart Grid Privacy Se, A-5412 Urstein Sud, Austria
关键词
Compression; evaluation; load data; resumability; CHALLENGES;
D O I
10.1109/TSG.2014.2364686
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a compression approach for load profile data, which addresses practical requirements of smart metering. By providing linear time complexity with respect to the input data size, our compression approach is suitable for low-complexity encoding and decoding for storage and transmission of load profile data in smart grids. Furthermore, it allows for resumability with very low overhead on error-prone transmission lines, which is an important feature not available for standard time series compression schemes. In terms of compression efficiency, our approach outperforms transmission encodings that are currently used for electricity metering by an order of magnitude.
引用
收藏
页码:919 / 929
页数:11
相关论文
共 50 条
  • [1] Performance Analysis of Resumable Load Data Compression Algorithm (RLDA) for Power System Operational Data
    Sarkar, Subhra J.
    Kundu, Palash K.
    Sarkar, Gautam
    [J]. 2017 IEEE CALCUTTA CONFERENCE (CALCON), 2017, : 16 - 20
  • [2] Big Data Analytics for Price and Load Forecasting in Smart Grids
    Mujeeb, Sana
    Javaid, Nadeem
    Akbar, Mariam
    Khalid, Rabiya
    Nazeer, Orooj
    Khan, Mahnoor
    [J]. ADVANCES ON BROADBAND AND WIRELESS COMPUTING, COMMUNICATION AND APPLICATIONS, BWCCA-2018, 2019, 25 : 77 - 87
  • [3] A New Approach of Data Pre-processing for Data Compression in Smart Grids
    Sun, Yifei
    Zou, Hang
    Lasaulce, Samson
    Kieffer, Michel
    Saludjian, Lucas
    [J]. 2019 INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS (WINCOM), 2019, : 261 - 266
  • [4] Smart Metering Load Data Compression Based on Load Feature Identification
    Tong, Xing
    Kang, Chongqing
    Xia, Qing
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (05) : 2414 - 2422
  • [5] A novel approach for load profiling in smart power grids using smart meter data
    Khan, Zafar A.
    Jayaweera, Dilan
    Alvarez-Alvarado, Manuel S.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2018, 165 : 191 - 198
  • [6] A data mining based load forecasting strategy for smart electrical grids
    Saleh, Ahmed I.
    Rabie, Asmaa H.
    Abo-Al-Ez, Khaled M.
    [J]. ADVANCED ENGINEERING INFORMATICS, 2016, 30 (03) : 422 - 448
  • [7] Adaptable Load Scheduling for Smart Grids
    Chai, Chin Choy
    Xiang, Liu
    [J]. TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 1721 - 1726
  • [8] Load Control Techniques in Smart Grids
    Nur, Ahmet
    Kaygusuz, Asim
    [J]. 2016 4TH INTERNATIONAL ISTANBUL SMART GRID CONGRESS AND FAIR (ICSG), 2016, : 108 - 111
  • [9] Lossless Compression of High-Frequency Voltage and Current Data in Smart Grids
    Unterweger, Andreas
    Engel, Dominik
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 3131 - 3139
  • [10] Big Data Compression in Smart Grids via Optimal Singular Value Decomposition
    Hashemipour, Seyed Naser
    Aghaei, Jamshid
    Kavousi-fard, Abdullah
    Niknam, Taher
    Salimi, Ladan
    del Granado, Pedro Crespo
    Shafie-khah, Miadreza
    Wang, Fei
    Catalao, Joao P. S.
    [J]. 2020 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2020,