Evolutionary Learning for Neuro-fuzzy Ensembles with Generalized Parametric Triangular Norms

被引:0
|
作者
Gabryel, Marcin [1 ,2 ]
Korytkowski, Marcin [1 ,2 ]
Pokropinska, Agata [4 ]
Scherer, Rafal [1 ,5 ]
Drozda, Stanislaw [3 ]
机构
[1] Czestochowa Tech Univ, Dept Comp Engn, Al Armii Krajowej 36, PL-42200 Czestochowa, Poland
[2] Kotarbinski Olsztyn Acad Comp Sci & Management, PL-10165 Olsztyn, Poland
[3] Univ Warmia & Mazury, Fac Math & Comp Sci, PL-10561 Olsztyn, Poland
[4] Jan Dlugosz Univ, Inst Math & Comp Sci, Czestochowa, Poland
[5] Acad Management SWSPiZ, Inst Informat Technol, PL-90113 Lodz, Poland
关键词
SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a method for designing neuro-fuzzy systems with Mamdani-type inference and parametric t-norm connecting rule antecedents. Hamacher product was used as t-norm. The neuro-fuzzy systems are used to create an ensemble of classifiers. After obtaining the ensemble by bagging, every neuro-fuzzy system has its t-norm parameters fine-tuned. Thanks to this the accuracy is improved and the number of parameters can be reduced. The proposed method is tested on a well known benchmark.
引用
收藏
页码:74 / +
页数:2
相关论文
共 50 条
  • [1] Modular Neuro-Fuzzy Systems Based on Generalized Parametric Triangular Norms
    Korytkowski, Marcin
    Scherer, Rafal
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2010, 6067 : 332 - 339
  • [2] Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems
    Rutkowski, L
    Cpalka, K
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (01) : 140 - 151
  • [3] Negative Correlation Learning of Neuro-fuzzy System Ensembles
    Korytkowski, Marcin
    Scherer, Rafal
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2010, 6113 : 114 - 119
  • [4] An application of weighted triangular norms to complexity reduction of neuro-fuzzy systems
    Cpalka, Krzysztof
    Rutkowski, Leszek
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 207 - 216
  • [5] New Approach for Interpretability of Neuro-Fuzzy Systems with Parametrized Triangular Norms
    Lapa, Krystian
    Cpalka, Krzysztof
    Wang, Lipo
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2016, 2016, 9692 : 248 - 265
  • [6] Evolutionary Learning of Flexible Neuro-Fuzzy Systems
    Cpalka, Krzysztof
    Rutkowski, Leszek
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 969 - 975
  • [7] Neuro-fuzzy systems derived from from quasi-triangular norms
    Rutkowski, L
    Cpalka, K
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 1031 - 1036
  • [8] Neuro-fuzzy ensembles: A systematic mapping study
    Ouifak, Hafsaa
    Idri, Ali
    [J]. 2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [9] Evolutionary learning of Mamdani-type neuro-fuzzy systems
    Gabryel, Marcin
    Rutkowski, Leszek
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 354 - 359
  • [10] On the Synergism of Evolutionary Neuro-Fuzzy System
    Srivastava, Vivek
    Tripathi, Bipin K.
    Pathak, Vinay K.
    Tiwari, Anand
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4827 - 4834