Word-IPCA: An Improvement in Dimension Reduction Techniques

被引:0
|
作者
Sancheti, Payal [1 ]
Shedge, Rajashree [1 ]
Pulgam, Namita [1 ]
机构
[1] Ramrao Adik Inst Technol, Dept Comp Engn, Mumbai, India
关键词
Text Mining; dimension Reduction; PCA; ICA; LSA; WordNet;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Text Documents have high dimensions and processing knowledge from such huge magnitude of data is cumbersome. High dimensionality has inherent noise and sparsity. Dimension reduction is a preprocessing step in Text Mining which transforms data sets into more compact form and eliminates redundancy. Many statistical techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and their variants are available but these are incapable to check semantic information. Semantical techniques like Latent Semantic Analysis (LSA) help to find the semantic relationship but have computation limitation. This paper focuses on study and comparative analysis of dimension reduction techniques. The proposed hybrid method combines the success of statistical approach, semantic approach and then checks the extracted features with WordNet dictionary. This approach will help to reduce the dimensions and fulfill the purpose of semantic check.
引用
收藏
页码:575 / 578
页数:4
相关论文
共 50 条
  • [1] REDUCTION TECHNIQUES FOR THE FINITISTIC DIMENSION
    Green, Edward L.
    Psaroudakis, Chrysostomos
    Solberg, Oyvind
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (10) : 6839 - 6879
  • [2] Dimension reduction techniques for conditional expectiles
    Christou, Eliana
    [J]. STATISTICS, 2023, 57 (04) : 960 - 985
  • [3] Comparing dimension reduction techniques for document clustering
    Tang, B
    Shepherd, M
    Heywood, MI
    Luo, X
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3501 : 292 - 296
  • [4] Toward a Quantitative Survey of Dimension Reduction Techniques
    Espadoto, Mateus
    Martins, Rafael M.
    Kerren, Andreas
    Hirata, Nina S. T.
    Telea, Alexandru C.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (03) : 2153 - 2173
  • [5] Dimension Reduction Techniques for Market Basket Analysis
    Anbarasi
    Srinivas, D. Sathya
    Vivekanandan, K.
    [J]. INFORMATION AND ELECTRONICS ENGINEERING, 2011, 6 : 245 - 247
  • [6] Effective Dimension Reduction Techniques for Text Documents
    Ponmuthuramalingam, P.
    Devi, T.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (07): : 101 - 109
  • [7] Dimension reduction techniques: Current status and perspectives
    Vachharajani, Bhasha
    Pandya, Dishant
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 62 (P13) : 7024 - 7027
  • [8] Forecast combination through dimension reduction techniques
    Poncela, Pilar
    Rodriguez, Julio
    Sanchez-Mangas, Rock
    Senra, Eva
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (02) : 224 - 237
  • [9] Dimension Reduction Techniques for Signal Separation Algorithms
    Abouzid, Houda
    Chakkor, Otman
    [J]. BIG DATA, CLOUD AND APPLICATIONS, BDCA 2018, 2018, 872 : 326 - 340
  • [10] Dimension Reduction Techniques for Distributional Symbolic Data
    Verde, Rosanna
    Irpino, Antonio
    Balzanella, Antonio
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (02) : 344 - 355