KREIN SPACE UNITARY DILATIONS OF HILBERT SPACE HOLOMORPHIC SEMIGROUPS

被引:0
|
作者
Marcantognini, Stefania A. M. [1 ,2 ,3 ]
机构
[1] Inst Venezolano Invest Cient, Dept Math, Km 11 Carretera Panamer, Altos De Pipe, Edo Miranda, Venezuela
[2] Consejo Nacl Invest Cient & Tecn, Inst Argentino Matemat Alberto P Calderon, Saavedra 15,Piso 3,C1083, Caba, Argentina
[3] Univ Nacl Gen Sarmiento, Inst Ciencias, Juan Maria Gutierrez 1150,B1613, Los Polvorines, Buenos Aires, Argentina
来源
关键词
Hilbert space holomorphic semigroups; Krein space unitary groups; sectorial operators; Naimark's representation theorem;
D O I
10.33044/revuma.v61n1a09
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The infinitesimal generator A of a strongly continuous semigroup on a Hilbert space is assumed to satisfy that B-beta := A-beta is a sectorial operator of angle less than pi/2 for some beta >= 0. If B-beta is dissipative in some equivalent scalar product then the Naimark-Arocena representation theorem is applied to obtain a Krein space unitary dilation of the semigroup.
引用
收藏
页码:145 / 160
页数:16
相关论文
共 50 条