On the localization of solutions of doubly nonlinear parabolic equations with nonstandard growth in filtration theory

被引:3
|
作者
Antontsev, S. [1 ,2 ]
Shmarev, S. [3 ]
机构
[1] Univ Lisbon, CMAF, Ave Prof Gama Pinto 2, P-1649003 Lisbon, Portugal
[2] Novosibirsk State Univ, Dept Math & Mech, 90,Pirogova Str 2, Novosibirsk 630090, Russia
[3] Univ Oviedo, Dept Math, C Calvo Sotelo S-N, Oviedo 33007, Spain
基金
俄罗斯科学基金会;
关键词
doubly nonlinear parabolic equation; variable nonlinearity; space localization; waiting time; VARIABLE EXPONENT; EXISTENCE; UNIQUENESS; SPACES;
D O I
10.1080/00036811.2015.1043283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the properties of space localization of weak solutions of the equation. partial derivative(t) (vertical bar u vertical bar(m(x,t)) sign u) - div A(x,t,u,del u) + C(x,t,u) = 0 which appears in the mathematical description of filtration of an ideal barotropic gas in a porous medium. The functionsAand C are assumed to satisfy the nonstandard growth conditions: for all(x, t) is an element of Omega x (0, T), s is an element of R, xi is an element of R-n vertical bar A(x, t, s, xi)vertical bar <= a(1) vertical bar xi vertical bar(p(x,) (t)-1), A(x, t, s, xi) . xi >= a(0)vertical bar xi vertical bar(p(x,) (t)), C(x, t, s)s >= c(0)vertical bar s vertical bar(sigma(x, t)) - f(x, t) with some positive constants a(0), a(1), c(0) and measurable bounded functions p(x, t) > 1, sigma(x, t) > 1, m( x, t) > 0. It is shown that if ess sup m(x, t) + 1 < ess inf p(x, t), f(x, t) = 0, and m(x, t), p(x, t) meet certain regularity requirements, then every weak solution possesses the property of finite speed of propagation of disturbances from the initial data. In the case that u(x, 0) = 0 in a ball B-r(x(0)) and f(x, t) = 0 in Br (x(0)) x (0, T), the solutions display the waiting time property: if parallel to vertical bar u(0)vertical bar(m+1)parallel to(1), (B rho(x0)) + parallel to vertical bar f vertical bar(m+1/m)parallel to(1, Q rho(x0)) <= is an element of(rho - rho(0))(+)(1/(1-nu)) with a positive exponent nu, depending on m(x, t) and p(x, t), and a sufficiently small epsilon> 0, then there exists t* > 0 such that u = 0 in B-r(x(0)) x (0, t*).
引用
收藏
页码:2162 / 2180
页数:19
相关论文
共 50 条
  • [1] UNIQUENESS AND COMPARISON THEOREMS FOR SOLUTIONS OF DOUBLY NONLINEAR PARABOLIC EQUATIONS WITH NONSTANDARD GROWTH CONDITIONS
    Antontsev, Stanislav
    Chipot, Michel
    Shmarev, Sergey
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (04) : 1527 - 1546
  • [2] EXISTENCE AND UNIQUENESS FOR DOUBLY NONLINEAR PARABOLIC EQUATIONS WITH NONSTANDARD GROWTH CONDITIONS
    Antontsev, Stanislav
    Shmarev, Sergey
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2012, 4 (01): : 67 - 94
  • [3] Existence of renormalized solution for a class of doubly nonlinear parabolic equations with nonstandard growth
    Lahmi, Badr
    El Haiti, Khalid
    Abbassi, Adil
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2015, 42 (02): : 300 - 317
  • [4] Nonlinear parabolic equations with nonstandard growth
    Youssfi, A.
    Azroul, E.
    Lahmi, B.
    [J]. APPLICABLE ANALYSIS, 2016, 95 (12) : 2766 - 2778
  • [5] Singular solutions in nonlinear parabolic equations with anisotropic nonstandard growth conditions
    Liu, Bingchen
    Dong, Mengzhen
    Li, Fengjie
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
  • [6] Extinction of Weak Solutions for Nonlinear Parabolic Equations with Nonstandard Growth Conditions
    Gao Jing-lu Guo Bin (School of Mathematics
    [J]. Communications in Mathematical Research, 2012, 28 (04) : 376 - 382
  • [7] Strong Solutions of Doubly Nonlinear Parabolic Equations
    Matas, Ales
    Merker, Jochen
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2012, 31 (02): : 217 - 235
  • [8] RENORMALIZED SOLUTIONS OF DOUBLY NONLINEAR PARABOLIC EQUATIONS
    BLANCHARD, D
    REDWANE, H
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 831 - 835
  • [9] BOUNDEDNESS PROPERTIES OF SOLUTIONS OF DOUBLY NONLINEAR PARABOLIC EQUATIONS
    梁 廷
    梁学信
    [J]. Acta Mathematica Scientia, 1994, (S1) : 110 - 117
  • [10] Local behaviour of solutions to doubly nonlinear parabolic equations
    Juha Kinnunen
    Tuomo Kuusi
    [J]. Mathematische Annalen, 2007, 337 : 705 - 728