Overcomplete Deep Subspace Clustering Networks

被引:16
|
作者
Valanarasu, Jeya Maria Jose [1 ]
Patel, Vishal M. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, 3400 N Charles St, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
MOTION SEGMENTATION; FACTORIZATION; ROBUST;
D O I
10.1109/WACV48630.2021.00079
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Subspace Clustering Networks (DSC) provide an efficient solution to the problem of unsupervised subspace clustering by using an undercomplete deep auto-encoder with a fully-connected layer to exploit the self expressiveness property. This method uses undercomplete representations of the input data which makes it not so robust and more dependent on pre-training. To overcome this, we propose a simple yet efficient alternative method - Overcomplete Deep Subspace Clustering Networks (ODSC) where we use overcomplete representations for subspace clustering. In our proposed method, we fuse the features from both undercomplete and overcomplete auto-encoder networks before passing them through the self-expressive layer thus enabling us to extract a more meaningful and robust representation of the input data for clustering. Experimental results on four benchmark datasets show the effectiveness of the proposed method over DSC and other clustering methods in terms of clustering error. Our method is also not as dependent as DSC is on where pre-training should be stopped to get the best performance and is also more robust to noise. Code - https://github.com/jeya-mariajose/Overcomplete-Deep-Subspace-Clustering
引用
收藏
页码:746 / 755
页数:10
相关论文
共 50 条
  • [1] Deep Subspace Clustering Networks
    Ji, Pan
    Zhang, Tong
    Li, Hongdong
    Salzmann, Mathieu
    Reid, Ian
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] Deep Multimodal Subspace Clustering Networks
    Abavisani, Mahdi
    Patel, Vishal M.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1601 - 1614
  • [3] Multiview Deep Subspace Clustering Networks
    Zhu, Pengfei
    Yao, Xinjie
    Wang, Yu
    Hui, Binyuan
    Du, Dawei
    Hu, Qinghua
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (07) : 4280 - 4293
  • [4] Deep Subspace Clustering
    Peng, Xi
    Feng, Jiashi
    Zhou, Joey Tianyi
    Lei, Yingjie
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (12) : 5509 - 5521
  • [5] GAN-Based Enhanced Deep Subspace Clustering Networks
    Yu, Zhiwen
    Zhang, Zhongfan
    Cao, Wenming
    Liu, Cheng
    Chen, C. L. Philip
    Wong, Hau-San
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3267 - 3281
  • [6] Deep Adversarial Subspace Clustering
    Zhou, Pan
    Hou, Yunqing
    Feng, Jiashi
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1596 - 1604
  • [7] Iterative Deep Subspace Clustering
    Zhou, Lei
    Wang, Shuai
    Bai, Xiao
    Zhou, Jun
    Hancock, Edwin
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2018, 2018, 11004 : 42 - 51
  • [8] Deep robust multi-channel learning subspace clustering networks
    Fang, Mengzhu
    Gao, Wei
    Feng, Zirui
    [J]. IMAGE AND VISION COMPUTING, 2023, 137
  • [9] Unsupervised Deep Learning for Subspace Clustering
    Sekmen, Ali
    Koku, Ahmet Bugra
    Parlaktuna, Mustafa
    Abdul-Malek, Ayad
    Vanamala, Nagendrababu
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 2089 - 2094
  • [10] Deep Bayesian Sparse Subspace Clustering
    Ye, Xulun
    Luo, Shuhui
    Chao, Jieyu
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1888 - 1892