Fractional diffusion equations with internal degrees of freedom

被引:0
|
作者
Vázquez, L
机构
[1] Univ Complutense, Fachbereich Informat, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] CSIC, INTA, Ctr Astrobiol, E-28850 Madrid, Spain
关键词
fractional derivative; diffunors; diffusion process; generalized Dirac equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a generalization of the linear one-dimensional diffusion equation by combining the fractional derivatives and the internal degrees of freedom. The solutions are constructed from those of the scalar fractional diffusion equation. We analyze the interpolation between the standard diffusion and wave equations defined by the fractional derivatives. Our main result is that we can define a diffusion process depending on the internal degrees of freedom associated to the system.
引用
收藏
页码:491 / 494
页数:4
相关论文
共 50 条
  • [1] FRACTIONAL DIFFUSION EQUATIONS WITH INTERNAL DEGREES OF FREEDOM
    LuisVázquez
    [J]. Journal of Computational Mathematics, 2003, (04) : 491 - 494
  • [2] RELAXATION EQUATIONS FOR GASES WITH INTERNAL DEGREES OF FREEDOM
    ENDER, AY
    [J]. SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1971, 16 (02): : 205 - &
  • [3] Anomalous diffusion of particles with internal degrees of freedom
    Blumen, A
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2001, 81 (09): : 1021 - 1031
  • [4] DIFFUSION AND THERMAL DIFFUSION IN GASEOUS MIXTURES WITH INTERNAL DEGREES OF FREEDOM
    VANDEREE, J
    [J]. PHYSICA, 1967, 37 (04): : 584 - &
  • [5] TRANSPORT EQUATIONS FOR DILUTE GASES WITH INTERNAL DEGREES OF FREEDOM
    TIP, A
    [J]. PHYSICA, 1971, 52 (04): : 493 - +
  • [6] TENSOR EQUATIONS AND DIRAC PARTICLES WITH INTERNAL DEGREES OF FREEDOM
    PLETYUKHOV, VA
    STRAZHEV, VI
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1989, 49 (05): : 933 - 938
  • [7] INTEGRAL KINETIC EQUATIONS FOR A MIXTURE OF GASES WITH INTERNAL DEGREES OF FREEDOM
    VALLANDER, SV
    BELOVA, AV
    [J]. AIAA JOURNAL, 1963, 1 (10) : 2454 - 2456
  • [8] INTERNAL DEGREES OF FREEDOM IN PERTURBED NONLINEAR KLEIN-GORDON EQUATIONS
    Vazquez, L.
    Jimenez, S.
    Bellorin, A.
    Guerrero, L. E.
    Gonzalez, J. A.
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (04): : 527 - 553
  • [9] Fluids with internal degrees of freedom
    Lado, F
    [J]. NEW APPROACHES TO PROBLEMS IN LIQUID STATE THEORY: INHOMOGENEITIES AND PHASE SEPARATION IN SIMPLE, COMPLEX AND QUANTUM FLUIDS, 1999, 529 : 91 - 105
  • [10] On pseudodynamics of internal degrees of freedom
    Pazma, V
    Presnajder, P
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1997, 47 (06) : 607 - 619