共 50 条
Extended escaping set for meromorphic functions outside a countable set of transcendental singularities
被引:1
|作者:
Dominguez, Patricia
[1
]
de Oca, Marco A. Montes
[2
]
Sienra, Guillermo J. F.
[3
]
机构:
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fisicomatemat, Cu Puebla 72570, Mexico
[2] Univ Juarez Estado Durango, Fac Ciencias Exactas, Durango 34113, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
关键词:
meromorphic functions;
Fatou and Julia sets;
escaping set;
Baker domain;
wandering domain;
HAUSDORFF DIMENSION;
WANDERING DOMAINS;
DYNAMIC RAYS;
SELF-MAPS;
POINTS;
EXAMPLES;
D O I:
10.4064/ap190820-31-3
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider the class K of functions f that are meromorphic outside a compact and countable set B(f ), which is the closure of isolated transcendental singularities of f. We define the extended escaping set Ib(f) and prove that Ib(f) is a dynamical invariant. Using curves contained in Ib(f) we define the itinerary of an escaping curve for transcendental singularities. As an example we study the function f(z) = e sin z + z + 27r and show that it has an escaping curve contained in a wandering domain with a wandering end-point.
引用
收藏
页码:25 / 41
页数:17
相关论文