Extended escaping set for meromorphic functions outside a countable set of transcendental singularities

被引:1
|
作者
Dominguez, Patricia [1 ]
de Oca, Marco A. Montes [2 ]
Sienra, Guillermo J. F. [3 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fisicomatemat, Cu Puebla 72570, Mexico
[2] Univ Juarez Estado Durango, Fac Ciencias Exactas, Durango 34113, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
关键词
meromorphic functions; Fatou and Julia sets; escaping set; Baker domain; wandering domain; HAUSDORFF DIMENSION; WANDERING DOMAINS; DYNAMIC RAYS; SELF-MAPS; POINTS; EXAMPLES;
D O I
10.4064/ap190820-31-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the class K of functions f that are meromorphic outside a compact and countable set B(f ), which is the closure of isolated transcendental singularities of f. We define the extended escaping set Ib(f) and prove that Ib(f) is a dynamical invariant. Using curves contained in Ib(f) we define the itinerary of an escaping curve for transcendental singularities. As an example we study the function f(z) = e sin z + z + 27r and show that it has an escaping curve contained in a wandering domain with a wandering end-point.
引用
收藏
页码:25 / 41
页数:17
相关论文
共 50 条