Spoof Surface Plasmon Polariton Waveguide With Switchable Notched Band

被引:16
|
作者
Li, Jianxing [1 ]
Xu, Kai-Da [1 ]
Shi, Junwei [1 ]
Guo, Ying-Jiang [2 ]
Zhang, Anxue [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
[2] China Acad Engn Phys, Microsyst & Terahertz Res Ctr, Chengdu 610200, Peoples R China
关键词
Resonators; Electromagnetic waveguides; Coplanar waveguides; Resonant frequency; Surface plasmon polaritons; Passband; Optical waveguides; Coplanar waveguide (CPW); low-pass filter; notch filter; spoof surface plasmon polaritons (SSPPs); switchable circuits; HIGH-ORDER MODE;
D O I
10.1109/LPT.2021.3109612
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A coplanar waveguide (CPW) based spoof surface plasmon polariton (SSPP) waveguide with strong field confinement is proposed, which has a low-pass filtering response. Then, two half-wavelength slot resonators are loaded on both sides of the SSPP waveguide to introduce a notch in the passband. Meanwhile, the SSPP waveguide with two ring slot resonators is simulated, whose results are consistent with the SSPP low-pass filter. Finally, two PIN diodes are bridged across the slits of the two resonators to realize the dynamic switchability of the notch. The waveguide functions as a notch filter when the diodes are in on-state, and a low-pass filter when the diodes are in off-state. To verify the feasibility of the design, a SSPP waveguide example is fabricated and measured, where the simulated and measured results are in reasonably good agreement.
引用
收藏
页码:1147 / 1150
页数:4
相关论文
共 50 条
  • [1] A Band-Notched Coplanar Waveguide based on Spoof Surface Plasmon Polaritons
    Xu, Bingzheng
    Li, Zhuo
    Liu, Liangliang
    Ning, Pingping
    Chen, Chen
    Gu, Changqing
    [J]. 9TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2015), 2015, : 445 - 447
  • [2] Switchable Spoof Surface Plasmon Polariton Slow Light Structures
    Klein, Andreas K.
    Zeze, Dagou
    Balocco, Claudio
    Gallant, Andrew
    [J]. 2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [3] Compact spoof surface plasmon polariton waveguide with asymmetric serrations
    An, Cheng
    Xiao, Zhenning
    Li, Weiwen
    Wang, Yu
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (28) : 22300 - 22308
  • [4] Compact spoof surface plasmon polariton waveguide with asymmetric serrations
    Cheng An
    Zhenning Xiao
    Weiwen Li
    Yu Wang
    [J]. Journal of Materials Science: Materials in Electronics, 2022, 33 : 22300 - 22308
  • [5] Spoof surface plasmon polariton waveguide with spiral structure units
    Qian Qiao
    Yong Xu
    Liangcai Zhang
    Weiwen Li
    Zhiyuan Shi
    [J]. The European Physical Journal Plus, 136
  • [6] Spoof surface plasmon polariton waveguide with spiral structure units
    Qiao, Qian
    Xu, Yong
    Zhang, Liangcai
    Li, Weiwen
    Shi, Zhiyuan
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (08):
  • [7] Terahertz spoof surface-plasmon-polariton subwavelength waveguide
    YING ZHANG
    YUEHONG XU
    CHUNXIU TIAN
    QUAN XU
    XUEQIAN ZHANG
    YANFENG LI
    XIXIANG ZHANG
    JIAGUANG HAN
    WEILI ZHANG
    [J]. Photonics Research, 2018, 6 (01) : 18 - 23
  • [8] Force distribution inside the spoof surface plasmon polariton waveguide
    Aghadjani, M.
    Erementchouk, M.
    Mazumder, P.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (05) : 1113 - 1118
  • [9] Terahertz spoof surface-plasmon-polariton subwavelength waveguide
    Zhang, Ying
    Xu, Yuehong
    Tian, Chunxiu
    Xu, Quan
    Zhang, Xueqian
    Li, Yanfeng
    Zhang, Xixiang
    Han, Jiaguang
    Zhang, Weili
    [J]. PHOTONICS RESEARCH, 2018, 6 (01) : 18 - 23
  • [10] Cascaded plasmon-induced transparency in spoof surface plasmon polariton waveguide
    Su, Xiaoqiang
    Dong, Lijuan
    Wen, Louhong
    Liu, Yuzhu
    Li, Yanfeng
    Ouyang, Chunmei
    Xu, Quan
    Zhang, Xueqian
    Shi, Yunlong
    Han, Jiaguang
    [J]. RESULTS IN PHYSICS, 2022, 43