Fairing recursive subdivision surfaces with curve interpolation constraints

被引:1
|
作者
Nasri, AH [1 ]
Kim, TW [1 ]
Lee, K [1 ]
机构
[1] Amer Univ Beirut, Dept Math & Comp Sci, Beirut, Lebanon
关键词
recursive subdivision; interpolation; B-spline; fairing; curvature control; tangent plane control;
D O I
10.1109/SMA.2001.923375
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a polygonal mesh with a set of tagged control polygons, a subdivision surface that interpolates the B-spline curves of these control polygons can be obtained by constructing a set of polygonal complexes, each of which converges to one of the given curves. The construction process will geometrically and topologically disturb the initial and/or the subdivided polygonal meshes in the vicinity of the polygonal complexes. This may result in a poorly shaped surfaces across the interpolated curves. Based on signal fairing, this paper describes a method to fair such a surface and paves the way to achieve further constraints such as interpolating curves with predefined tangent plane or cross curvature.
引用
收藏
页码:49 / +
页数:12
相关论文
共 50 条
  • [1] Taxonomy of interpolation constraints on recursive subdivision surfaces
    Nasri, AH
    Sabin, MA
    VISUAL COMPUTER, 2002, 18 (5-6): : 382 - 403
  • [2] Taxonomy of interpolation constraints on recursive subdivision surfaces
    Ahmad H. Nasri
    Malcolm A. Sabin
    The Visual Computer, 2002, 18 : 382 - 403
  • [3] Designing Catmull-Clark subdivision surfaces with curve interpolation constraints
    Nasri, AH
    Abbas, A
    COMPUTERS & GRAPHICS-UK, 2002, 26 (03): : 393 - 400
  • [4] Taxonomy of interpolation constraints on recursive subdivision curves
    Ahmad H. Nasri
    Malcolm A. Sabin
    The Visual Computer, 2002, 18 : 259 - 272
  • [5] Taxonomy of interpolation constraints on recursive subdivision curves
    Nasri, AH
    Sabin, MA
    VISUAL COMPUTER, 2002, 18 (04): : 259 - 272
  • [6] Constructing polygonal complexes with shape handles for curve interpolation by subdivision surfaces
    Nasri, AH
    COMPUTER-AIDED DESIGN, 2001, 33 (11) : 753 - 765
  • [7] Incenter subdivision scheme for curve interpolation
    Deng, Chongyang
    Wang, Guozhao
    COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (01) : 48 - 59
  • [8] Fillet operations with recursive subdivision surfaces
    Xu, Z
    Kondo, K
    GEOMETRIC MODELLING: THEORETICAL AND COMPUTATIONAL BASIS TOWARDS ADVANCED CAD APPLICATIONS, 2001, 75 : 269 - 284
  • [9] CURVE MESH FAIRING AND GC2 SURFACE INTERPOLATION
    NOWACKI, H
    KAKLIS, PD
    WEBER, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (01): : 113 - 135
  • [10] Algorithm of closed curve fairing optimization interpolation based on manifold
    Zhejiang University, China
    Nongye Jixie Xuebao, 2006, 10 (157-160):