Evolution of large-scale magnetosonic structures to trains of solitary waves

被引:4
|
作者
Strumik, M. [1 ]
Stasiewicz, K. [1 ,3 ]
Cheng, C. Z. [2 ,4 ]
Thide, B. [3 ]
机构
[1] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland
[2] Natl Cheng Kung Univ, Plasma & Space Sci Ctr, Tainan 70101, Taiwan
[3] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden
[4] Kyung Hee Univ, Sch Space Res, Yongin, South Korea
基金
瑞典研究理事会;
关键词
MIRROR INSTABILITY; MECHANISM; PLASMAS; MOTION;
D O I
10.1029/2011JA016565
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Large-amplitude magnetic pulsations on ion inertial length scales are often observed in space plasmas, but their theoretical explanation is still controversial. We discuss a possible mechanism, different from ideas based on the classical plasma instabilities, for the generation of these pulsations. It is demonstrated that a competition between dispersion and wave steepening processes can lead to the transformation of a large-scale magnetosonic structure into trains of solitons. This kind of longitudinal filamentation is possible for both slow and fast magnetosonic perturbations. Results of numerical simulations are compared with Cluster spacecraft measurements and show that the steepening filamentation mechanism can explain the emergence of a certain class of solitary waves observed in space plasmas.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Magnetosonic Solitary Waves
    Ignatov, A. M.
    [J]. PLASMA PHYSICS REPORTS, 2024, 50 (05) : 603 - 610
  • [2] Large-scale physical modeling of broken solitary waves impacting elevated coastal structures
    Krautwald, Clemens
    Von Häfen, Hajo
    Niebuhr, Peter
    Vögele, Katrin
    Schürenkamp, David
    Sieder, Mike
    Goseberg, Nils
    [J]. Coastal Engineering Journal, 2022, 64 (01): : 169 - 189
  • [3] Large-scale physical modeling of broken solitary waves impacting elevated coastal structures
    Krautwald, Clemens
    Von Haefen, Hajo
    Niebuhr, Peter
    Voegele, Katrin
    Schuerenkamp, David
    Sieder, Mike
    Goseberg, Nils
    [J]. COASTAL ENGINEERING JOURNAL, 2022, 64 (01) : 169 - 189
  • [4] Satellite Altimetry Observations of Large-Scale Internal Solitary Waves
    Magalhaes, J. M.
    da Silva, J. C. B.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (04) : 534 - 538
  • [5] Large-scale turbulence under a solitary wave: Part 2 forms and evolution of coherent structures
    Ting, Francis C. K.
    [J]. COASTAL ENGINEERING, 2008, 55 (06) : 522 - 536
  • [6] On the Eulerian approach to the evolution of large-scale structures
    Raposo, AP
    Buitrago, J
    Goicoechea, LJ
    [J]. ASTROPHYSICAL JOURNAL, 1998, 495 (01): : 9 - 24
  • [7] On the dynamics of Rossby algebraic solitary waves induced by large-scale topography
    Han, Fengyun
    Liu, Quansheng
    Yin, Xiaojun
    Zhang, Ruigang
    [J]. Physics of Fluids, 2024, 36 (10)
  • [8] SOLITARY MAGNETOSONIC WAVES IN A RELATIVISTIC PLASMA
    MUKHERJEE, J
    CHOWDHURY, AR
    [J]. AUSTRALIAN JOURNAL OF PHYSICS, 1994, 47 (06): : 757 - 771
  • [9] SOLITARY MAGNETOSONIC WAVES WITH LANDAU DAMPING
    JANAKI, MS
    DASGUPTA, B
    GUPTA, MR
    SOM, BK
    [J]. PHYSICA SCRIPTA, 1992, 45 (04): : 368 - 372
  • [10] Evolution and stationary state of the large-scale vortex structures
    Rutkevich, PB
    Moiseev, SS
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1996, 109 (05): : 1634 - 1644