Indecomposable decompositions of pure-injective objects and the pure-semisimplicity

被引:0
|
作者
Asensio, PAG
Simson, D
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Nicholas Copernicus Univ, Fac Math & Informat, PL-87100 Torun, Poland
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a criterion for the existence of an indecomposable decomposition of pure-injective objects in a locally finitely presented Grothendieck category A (Theorem 2.5). As a consequence we get Theorem 3.2, asserting that an associative unitary ring R is right pure-semisimple if and only if every right R-module is a direct sum of modules that are pure-injective or countably generated. Some open problems are formulated in the paper. (C) 2001 Academic Press.
引用
收藏
页码:478 / 491
页数:14
相关论文
共 50 条