Greedy Population Sizing for Evolutionary Algorithms

被引:8
|
作者
Smorodkina, Ekaterina [1 ]
Tauritz, Daniel [1 ]
机构
[1] Univ Missouri, Dept Comp Sci, Rolla, MO 65401 USA
关键词
D O I
10.1109/CEC.2007.4424742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The number of parameters that need to be manually tuned to achieve good performance of Evolutionary Algorithms and the dependency of the parameters on each other make this potentially robust and efficient computational method very time consuming and difficult to use. This paper introduces a Greedy Population Sizing method for Evolutionary Algorithms (GPS-EA), an automated population size tuning method that does not require any population size related parameters to be specified or manually tuned a priori. Theoretical analysis of the number of function evaluations needed by the GPS-EA to produce good solutions is provided. We also perform an empirical comparison of the performance of the GPS-EA to the performance of an EA with a manually tuned fixed population size. Both theoretical and empirical results show that using GPS-EA eliminates the need for manually tuning the population size parameter, while finding good solutions. This comes at the price of using twice as many function evaluations as needed by the EA with an optimal fixed population size; this, in practice, is a low price considering the amount of time and effort it takes to find this optimal population size manually.
引用
收藏
页码:2181 / 2187
页数:7
相关论文
共 50 条
  • [1] Population sizing of cellular evolutionary algorithms
    Fernandes, Carlos M.
    Fachada, Nuno
    Laredo, Juan L. J.
    Merelo, J. J.
    Rosa, Agostinho C.
    SWARM AND EVOLUTIONARY COMPUTATION, 2020, 58 (58)
  • [2] Greedy closure evolutionary algorithms
    Ashlock, D
    Guo, L
    Qiu, F
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1296 - 1301
  • [3] Versatility and Population Diversity of Evolutionary Algorithms in Automated Circuit Sizing Applications
    Visan, Catalin
    Pascu, Octavian
    Stanescu, Marius
    Cucu, Horia
    Diaconu, Cristian
    Buzo, Andi
    Pelz, Georg
    2021 INTERNATIONAL CONFERENCE ON SPEECH TECHNOLOGY AND HUMAN-COMPUTER DIALOGUE (SPED), 2021, : 68 - 73
  • [4] Parental population sizing in evolutionary strategies
    Huang, TY
    Chen, YY
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 1351 - 1358
  • [5] Optimal siting and sizing of UPFC using evolutionary algorithms
    Alamelu, Somasundaram
    Baskar, S.
    Babulal, C. K.
    Jeyadevi, S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 69 : 222 - 231
  • [6] Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing
    Mora-Melia, D.
    Iglesias-Rey, P. L.
    Martinez-Solano, F. J.
    Ballesteros-Perez, P.
    WATER RESOURCES MANAGEMENT, 2015, 29 (13) : 4817 - 4831
  • [7] Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing
    D. Mora-Melia
    P. L. Iglesias-Rey
    F. J. Martinez-Solano
    P. Ballesteros-Pérez
    Water Resources Management, 2015, 29 : 4817 - 4831
  • [8] Adaptive population sizing schemes in genetic algorithms
    Lobo, Fernando G.
    Lima, Claudio F.
    PARAMETER SETTING IN EVOLUTIONARY ALGORITHMS, 2007, 54 : 185 - +
  • [9] Analog circuit sizing based on Evolutionary Algorithms and deep learning
    Lberni, Abdelaziz
    Marktani, Malika Alami
    Ahaitouf, Abdelaziz
    Ahaitouf, Ali
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [10] Sensitivity Analysis in the Optimal Sizing of Analog ICs by Evolutionary Algorithms
    Guerra-Gomez, I.
    Tlelo-Cuautle, E.
    Gerardo de la Fraga, L.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 3161 - 3165