Proof-of-concept use of machine learning to predict tumor recurrence of early-stage hepatocellular carcinoma before therapy using baseline magnetic resonance imaging

被引:0
|
作者
Kuecuekkaya, Ahmet Said [1 ,2 ,3 ,4 ,5 ]
Zeevi, Tal [1 ]
Raju, Rajiv [1 ]
Chai, Nathan [1 ]
Haider, Stefan [1 ]
Elbanan, Mohamed [6 ]
Petukhova, Alexandra [1 ,2 ,3 ,4 ,5 ]
Lin, Mingde [1 ,7 ]
Onofrey, John [1 ]
Nowak, Michal [1 ]
Cooper, Kirsten [1 ]
Thomas, Elizabeth [1 ]
Gebauer, Bernhard [2 ,3 ,4 ,5 ]
Madoff, David [1 ]
Staib, Lawrence [1 ]
Batra, Ramesh [8 ]
Chapiro, Julius [1 ]
机构
[1] Yale Univ, Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT USA
[2] Charite Univ Med Berlin, Berlin, Germany
[3] Free Univ Berlin, Berlin, Germany
[4] Humboldt Univ, Berlin, Germany
[5] Berlin Inst Hlth, Inst Radiol, Berlin, Germany
[6] Yale New Haven Hlth Syst, Bridgeport Hosp, Dept Diagnost Radiol, Bridgeport, CT USA
[7] Visage Imaging Inc, San Diego, CA USA
[8] Yale Univ, Sch Med, Dept Surg Transplantat & Immunol, New Haven, CT USA
关键词
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
LBP14
引用
收藏
页码:S130 / S131
页数:2
相关论文
共 29 条
  • [1] PROOF-OF-CONCEPT USE OF MACHINE LEARNING TO PREDICT TUMOR RECURRENCE OF EARLY-STAGE HEPATOCELLULAR CARCINOMA BEFORE THERAPY USING BASELINE MAGNETIC RESONANCE IMAGING
    Batra, Ramesh
    Kuecuekkaya, Ahmet
    Zeevi, Tal
    Raju, Rajiv
    Chai, Nathan
    Haider, Stefan
    Elbanan, Mohamed
    Petukhova, Alexandra
    Lin, MingDe
    Onofrey, John
    Nowak, Michal
    Cooper, Kirsten
    Thomas, Elizabeth
    Gebauer, Bernhard
    Staib, Lawrence
    Chapiro, Julius
    TRANSPLANTATION, 2020, 104 (09) : S43 - S44
  • [2] Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
    Kucukkaya, Ahmet Said
    Zeevi, Tal
    Chai, Nathan Xianming
    Raju, Rajiv
    Haider, Stefan Philipp
    Elbanan, Mohamed
    Petukhova-Greenstein, Alexandra
    Lin, MingDe
    Onofrey, John
    Nowak, Michal
    Cooper, Kirsten
    Thomas, Elizabeth
    Santana, Jessica
    Gebauer, Bernhard
    Mulligan, David
    Staib, Lawrence
    Batra, Ramesh
    Chapiro, Julius
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
    Ahmet Said Kucukkaya
    Tal Zeevi
    Nathan Xianming Chai
    Rajiv Raju
    Stefan Philipp Haider
    Mohamed Elbanan
    Alexandra Petukhova-Greenstein
    MingDe Lin
    John Onofrey
    Michal Nowak
    Kirsten Cooper
    Elizabeth Thomas
    Jessica Santana
    Bernhard Gebauer
    David Mulligan
    Lawrence Staib
    Ramesh Batra
    Julius Chapiro
    Scientific Reports, 13
  • [4] Predicting tumor recurrence in patients with early-stage hepatocellular carcinoma using deep learning on baseline MR imaging
    Batra, Ramesh
    Kuecuekkaya, Ahmet
    Staib, Lawrence
    Chapiro, Julius
    AMERICAN JOURNAL OF TRANSPLANTATION, 2022, 22 : 26 - 26
  • [5] Machine Learning Models for Prediction of Posttreatment Recurrence in Early-Stage Hepatocellular Carcinoma Using Pretreatment Clinical and MRI Features: A Proof- of- Concept Study
    Iseke, Simon
    Zeevi, Tal
    Kucukkaya, Ahmet S.
    Raju, Rajiv
    Gross, Moritz
    Haider, Stefan P.
    Petukhova-Greenstein, Alexandra
    Kuhn, Tom N.
    Lin, MingDe
    Nowak, Michal
    Cooper, Kirsten
    Thomas, Elizabeth
    Weber, Marc-Andre
    Madoff, David C.
    Staib, Lawrence
    Batra, Ramesh
    Chapiro, Julius
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2023, 220 (02) : 245 - 255
  • [6] Nomogram built based on machine learning to predict recurrence in early-stage hepatocellular carcinoma patients treated with ablation
    Zhang, Honghai
    Sheng, Shugui
    Qiao, Wenying
    Sun, Yu
    Jin, Ronghua
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [7] Gd-EOB-DTPA-Enhanced Magnetic Resonance Imaging and Alpha-Fetoprotein Predict Prognosis of Early-Stage Hepatocellular Carcinoma
    Yamashita, Taro
    Kitao, Azusa
    Matsui, Osamu
    Hayashi, Takehiro
    Nio, Kouki
    Kondo, Mitsumasa
    Ohno, Naoki
    Miyati, Tosiaki
    Okada, Hikari
    Yamashita, Tatsuya
    Mizukoshi, Eishiro
    Honda, Masao
    Nakanuma, Yasuni
    Takamura, Hiroyuki
    Ohta, Tetsuo
    Nakamoto, Yasunari
    Yamamoto, Masakazu
    Takayama, Tadatoshi
    Arii, Shigeki
    Wang, XinWei
    Kaneko, Shuichi
    HEPATOLOGY, 2014, 60 (05) : 1674 - 1685
  • [8] Prediction of local tumor progression after microwave ablation for early-stage hepatocellular carcinoma with machine learning
    Ren, He
    An, Chao
    Fu, Wanxi
    Wu, Jingyan
    Yao, Wenhuan
    Yu, Jie
    Liang, Ping
    JOURNAL OF CANCER RESEARCH AND THERAPEUTICS, 2023, 19 (04) : 978 - 987
  • [9] Editorial Comment: MRI-Based Machine Learning Model for Prediction of Recurrence in Early-Stage Hepatocellular Carcinoma
    Borhani, Amir A.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2023, 220 (02) : 256 - 256
  • [10] Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging
    Hu, Guanjie
    Hu, Xinhua
    Yang, Kun
    Yu, Yun
    Jiang, Zijuan
    Liu, Yong
    Liu, Dongming
    Hu, Xiao
    Xiao, Hong
    Zou, Yuanjie
    You, Yongping
    Liu, Hongyi
    Chen, Jiu
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (01) : 129 - 135