共 50 条
Modeling tropical deforestation in the southern Yucatan peninsular region: comparing survey and satellite data
被引:162
|作者:
Geoghegan, J
Villar, SC
Klepeis, P
Mendoza, PM
Ogneva-Himmelberger, Y
Chowdhury, RR
Turner, BL
Vance, C
机构:
[1] Clark Univ, Dept Econ, Marsh Inst, Worcester, MA 01610 USA
[2] Colegio de la Frontera Sur, Quintana Roo, Mexico
[3] Colgate Univ, Dept Geog, Hamilton, NY 13346 USA
[4] Clark Univ, Marsh Inst, Grad Sch Geog, Worcester, MA 01610 USA
[5] US EPA, Natl Ctr Environm Econ, Washington, DC USA
[6] Colegio de la Frontera Sur, San Cristobal, Chiapas, Mexico
基金:
美国国家航空航天局;
关键词:
land-use/cover change;
econometric models;
survey and satellite data;
tropical deforestation;
Mexico;
D O I:
10.1016/S0167-8809(01)00201-8
中图分类号:
S [农业科学];
学科分类号:
09 ;
摘要:
This paper presents some initial modeling results from a large, interdisciplinary research project underway in the southern Yucatan peninsular region. The aims of the project are: to understand, through individual household survey work, the behavioral and structural dynamics that influence land managers' decisions to deforest and intensify land use; model these dynamics and link their outcomes directly to satellite imagery; model from the imagery itself; and, determine the robustness of modeling to and from the satellite imagery. Two complementary datasets, one from household survey data on agricultural practices including information on socio-economic factors and the second from satellite imagery Linked with aggregate government census data, are used in two econometric modeling approaches. Both models test hypotheses concerning deforestation during different time periods in the recent past in the region. The first uses the satellite data, other spatial environmental variables, and aggregate socio-economic data (e.g., census data) in a discrete-choice (logit) model to estimate the probability that any particular pixel in the landscape will be deforested, as a function of explanatory variables. The second model uses the survey data in a cross-sectional regression (OLS) model to ask questions about the amount of deforestation associated with each individual farmer and to explain these choices as a function of individual socio-demographic, market, environmental, and geographic variables, in both cases, however, the choices of explanatory variables are informed by social science theory as to what are hypothesized to affect the deforestation decision (e.g., in a von Thunen model, accessibility is hypothesized to affect choice; in a Ricardian model, land quality; in a Chayanovian model, consumer-labor ratio). The models ask different questions using different data, but several broad comparisons seem useful. While most variables are statistically significant in the discrete choice model, none of the location variables are statistically significant in the continuous model. Therefore, while location affects the overall probability of deforestation, it does not appear to explain the total amount of deforestation on a given location by an individual. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 46
页数:22
相关论文