Wigner functions defined with Laplace transform kernels

被引:1
|
作者
Oh, Se Baek [1 ]
Petruccelli, Jonathan C. [1 ]
Tian, Lei [1 ]
Barbastathis, George [1 ,2 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] MIT, Singapore MIT Alliance Res & Technol SMART Ctr, Singapore 117543, Singapore
来源
OPTICS EXPRESS | 2011年 / 19卷 / 22期
基金
新加坡国家研究基金会;
关键词
D O I
10.1364/OE.19.021938
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a new Wigner-type phase-space function using Laplace transform kernels-Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. (C) 2011 Optical Society of America
引用
收藏
页码:21938 / 21944
页数:7
相关论文
共 50 条