The functional spectrum of low-frequency coding variation

被引:154
|
作者
Marth, Gabor T. [1 ]
Yu, Fuli [2 ]
Indap, Amit R. [1 ]
Garimella, Kiran [3 ]
Gravel, Simon [4 ]
Leong, Wen Fung [1 ]
Tyler-Smith, Chris [5 ]
Bainbridge, Matthew [2 ]
Blackwell, Tom [6 ]
Zheng-Bradley, Xiangqun [7 ]
Chen, Yuan [5 ]
Challis, Danny [2 ]
Clarke, Laura [7 ]
Ball, Edward V. [8 ]
Cibulskis, Kristian [3 ]
Cooper, David N. [8 ]
Fulton, Bob [9 ]
Hartl, Chris [3 ]
Koboldt, Dan [9 ]
Muzny, Donna [4 ]
Smith, Richard [7 ]
Sougnez, Carrie [3 ]
Stewart, Chip [1 ]
Ward, Alistair [1 ]
Yu, Jin [2 ]
Xue, Yali [5 ]
Altshuler, David [3 ]
Bustamante, Carlos D. [4 ]
Clark, Andrew G. [10 ]
Daly, Mark [3 ]
DePristo, Mark [3 ]
Flicek, Paul [7 ]
Gabriel, Stacey [3 ]
Mardis, Elaine [9 ]
Palotie, Aarno [5 ]
Gibbs, Richard [2 ]
机构
[1] Boston Coll, Dept Biol, Chestnut Hill, MA 02467 USA
[2] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
[3] 7 Cambridge Ctr, Broad Inst, Populat Genom Program, Cambridge, MA 02142 USA
[4] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[5] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England
[6] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
[7] European Bioinformat Inst, Cambridge CB10 1SD, England
[8] Cardiff Univ, Sch Med, Inst Med Genet, Cardiff CF14 4XN, S Glam, Wales
[9] Washington Univ, Sch Med, Genome Inst, St Louis, MO 63108 USA
[10] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
来源
GENOME BIOLOGY | 2011年 / 12卷 / 09期
基金
美国国家卫生研究院; 英国惠康基金;
关键词
POLYMORPHISM; GENERATION; DISCOVERY;
D O I
10.1186/gb-2011-12-9-r84
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Rare coding variants constitute an important class of human genetic variation, but are underrepresented in current databases that are based on small population samples. Recent studies show that variants altering amino acid sequence and protein function are enriched at low variant allele frequency, 2 to 5%, but because of insufficient sample size it is not clear if the same trend holds for rare variants below 1% allele frequency. Results: The 1000 Genomes Exon Pilot Project has collected deep-coverage exon-capture data in roughly 1,000 human genes, for nearly 700 samples. Although medical whole-exome projects are currently afoot, this is still the deepest reported sampling of a large number of human genes with next-generation technologies. According to the goals of the 1000 Genomes Project, we created effective informatics pipelines to process and analyze the data, and discovered 12,758 exonic SNPs, 70% of them novel, and 74% below 1% allele frequency in the seven population samples we examined. Our analysis confirms that coding variants below 1% allele frequency show increased population-specificity and are enriched for functional variants. Conclusions: This study represents a large step toward detecting and interpreting low frequency coding variation, clearly lays out technical steps for effective analysis of DNA capture data, and articulates functional and population properties of this important class of genetic variation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The functional spectrum of low-frequency coding variation
    Gabor T Marth
    Fuli Yu
    Amit R Indap
    Kiran Garimella
    Simon Gravel
    Wen Fung Leong
    Chris Tyler-Smith
    Matthew Bainbridge
    Tom Blackwell
    Xiangqun Zheng-Bradley
    Yuan Chen
    Danny Challis
    Laura Clarke
    Edward V Ball
    Kristian Cibulskis
    David N Cooper
    Bob Fulton
    Chris Hartl
    Dan Koboldt
    Donna Muzny
    Richard Smith
    Carrie Sougnez
    Chip Stewart
    Alistair Ward
    Jin Yu
    Yali Xue
    David Altshuler
    Carlos D Bustamante
    Andrew G Clark
    Mark Daly
    Mark DePristo
    Paul Flicek
    Stacey Gabriel
    Elaine Mardis
    Aarno Palotie
    Richard Gibbs
    [J]. Genome Biology, 12
  • [2] Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk
    Cotsapas, Chris
    [J]. CELL, 2019, 178 (01) : 262 - 262
  • [3] Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk
    Cotsapas, Chris
    [J]. CELL, 2018, 175 (06) : 1679 - +
  • [4] No large-effect low-frequency coding variation found for myocardial infarction
    Holmen, Oddgeir L.
    Zhang, He
    Zhou, Wei
    Schmidt, Ellen
    Hovelson, Daniel H.
    Langhammer, Arnulf
    Lochen, Maja-Lisa
    Ganesh, Santhi K.
    Mathiesen, Ellisiv B.
    Vatten, Lars
    Platou, Carl
    Wilsgaard, Tom
    Chen, Jin
    Skorpen, Frank
    Dalen, Havard
    Boehnke, Michael
    Abecasis, Goncalo R.
    Njolstad, Inger
    Hveem, Kristian
    Willer, Cristen J.
    [J]. HUMAN MOLECULAR GENETICS, 2014, 23 (17) : 4721 - 4728
  • [5] The Contribution of Low-Frequency and Rare Coding Variation to Susceptibility to Type 2 Diabetes
    Flannick, Jason
    [J]. CURRENT DIABETES REPORTS, 2019, 19 (05)
  • [6] The Contribution of Low-Frequency and Rare Coding Variation to Susceptibility to Type 2 Diabetes
    Jason Flannick
    [J]. Current Diabetes Reports, 2019, 19
  • [7] LOW-FREQUENCY POWER SPECTRUM ANALYZER
    FIRLE, TE
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1956, 27 (03): : 140 - 143
  • [8] LOW-FREQUENCY ROTATIONAL SPECTRUM OF HDO
    WEISBAUM, S
    BEERS, Y
    HERRMANN, G
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1955, 23 (09): : 1601 - 1605
  • [9] LOW-FREQUENCY NOISE SPECTRUM ANALYZER
    SALNICHENKO, AY
    [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1976, 19 (05) : 1358 - 1360
  • [10] Strength in numbers in the low-frequency spectrum
    Magdalena Skipper
    [J]. Nature Reviews Genetics, 2015, 16 : 623 - 623