Fermat's last theorem over some small real quadratic fields

被引:28
|
作者
Freitas, Nuno [1 ]
Siksek, Samir [2 ]
机构
[1] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Fermat; modularity; Galois representation; level lowering; ELLIPTIC-CURVES; POINTS;
D O I
10.2140/ant.2015.9.875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using modularity, level lowering, and explicit computations with Hilbert modular forms, Galois representations, and ray class groups, we show that for 3 <= d <= 23, where d not equal 5, 17 and is squarefree, the Fermat equation x(n) + y(n) = z(n) has no nontrivial solutions over the quadratic field Q(root d) for n >= 4. Furthermore, we show that for d = 17, the same holds for prime exponents n equivalent to 3, 5 (mod 8).
引用
收藏
页码:875 / 895
页数:21
相关论文
共 50 条