On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces

被引:30
|
作者
Castro-Gonzalez, N. [1 ]
Velez-Cerrada, J. Y. [1 ]
机构
[1] Univ Politecn Madrid, Fac Informat, Dept Matemat Aplicada, E-28660 Madrid, Spain
关键词
drazin inverse; group inverse; bounded operators; matrix operators; resolvent; perturbation;
D O I
10.1016/j.jmaa.2007.10.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a bounded operator A on a Banach space X with Drazin inverse AD and index r, we study the class of group invertible bounded operators B such that I + A(D)(B - A) is invertible and R(B) boolean AND N(A(r)) = {0}. We show that they can be written with respect to the decomposition X = R(A(r))circle plus N(A(r)) as a matrix operator, B = (B-1 B-12 B-21 B21B1-1B12), where B-1 and B-1(2) + B12B21 are invertible. Several characterizations of the perturbed operators are established, extending matrix results. We analyze the perturbation of the Drazin inverse and we provide explicit upper bounds of parallel to B-# - A(D)parallel to and parallel to BB# - A(D)A parallel to. We obtain a result on the continuity of the group inverse for operators on Banach spaces. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1213 / 1223
页数:11
相关论文
共 50 条
  • [1] A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES
    Wang, Zi
    Wang, Yuwen
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (06) : 1619 - 1631
  • [2] A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES
    王紫
    王玉文
    [J]. Acta Mathematica Scientia, 2017, (06) : 1619 - 1631
  • [3] On the generalized spectrum of bounded linear operators in Banach spaces
    Feng, Jue
    Li, Xiaoli
    Fu, Kaicheng
    [J]. AIMS MATHEMATICS, 2023, 8 (06): : 14132 - 14141
  • [4] PERTURBATION ANALYSIS OF THE MOORE-PENROSE INVERSE FOR A CLASS OF BOUNDED OPERATORS IN HILBERT SPACES
    Deng, Chunyuan
    Wei, Yimin
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (04) : 831 - 843
  • [5] PERTURBATION ANALYSIS OF BOUNDED HOMOGENEOUS GENERALIZED INVERSES ON BANACH SPACES
    Cao, Jianbing
    Xue, Yifeng
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2014, 83 (02): : 181 - 194
  • [6] The generalized condition numbers of bounded linear operators in Banach spaces
    Chen, GL
    Wei, YM
    Xue, YF
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 76 : 281 - 290
  • [7] Perturbation analysis of generalized inverses of linear operators in Banach spaces
    Huang, QL
    Ma, JP
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 : 355 - 364
  • [8] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF CLOSED LINEAR OPERATORS IN BANACH SPACES
    Du, Fapeng
    Chen, Jianlong
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 240 - 253
  • [9] Iterative Approximations for a Class of Generalized Nonexpansive Operators in Banach Spaces
    Abdeljawad, Thabet
    Ullah, Kifayat
    Ahmad, Junaid
    Mlaiki, Nabil
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [10] Cesaro bounded operators in Banach spaces
    Bermudez, Teresa
    Bonilla, Antonio
    Muller, Vladimir
    Peris, Alfredo
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2020, 140 (01): : 187 - 206