An operator inequality related to Jensen's inequality

被引:0
|
作者
Uchiyama, M [1 ]
机构
[1] Fukuoka Univ Educ, Dept Math, Fukuoka 8114192, Japan
关键词
order of selfadjoint operators; Jensen inequality; Furuta inequality;
D O I
10.1090/S0002-9939-01-06130-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For bounded non-negative operators A and B, Furuta showed 0 less than or equal toA less than or equal toB implies Ar/2 B-s Ar/2 less than or equal to (Ar/2 B-t Ar/2) s+r/t+r (0 less than or equal tor, 0 less than or equal tos less than or equal tot). We will extend this as follows: 0 less than or equal toA less than or equal toB(lambda)(!)C (0<<lambda><1) implies Ar/2 (<lambda>B-s + (1-lambda )C-s)Ar/2 less than or equal to {Ar/2 (lambdaB(t) + (1-lambda )C-t)Ar/2}s+r/t+r, where (BlambdaC)-C-! is a harmonic mean of B and C. The idea of the proof comes from Jensen's inequality for an operator convex function by Hansen-Pedersen.
引用
收藏
页码:3339 / 3344
页数:6
相关论文
共 50 条
  • [1] Jensen's operator inequality
    Hansen, F
    Pedersen, GK
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 553 - 564
  • [2] CONVERSES OF JENSEN'S OPERATOR INEQUALITY
    Micic, Jadranka
    Pecaric, Josip
    Seo, Yuki
    [J]. OPERATORS AND MATRICES, 2010, 4 (03): : 385 - 403
  • [3] Operator Jensen's Inequality for Operator Superquadratic Functions
    Alomari, Mohammad W.
    Chesneau, Christophe
    Al-Khasawneh, Ahmad
    [J]. AXIOMS, 2022, 11 (11)
  • [4] An extension of Jensen's operator inequality and its application to Young inequality
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Mitroi-Symeonidis, Flavia-Corina
    Naseri, Razieh
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 605 - 614
  • [5] An extension of Jensen’s operator inequality and its application to Young inequality
    Hamid Reza Moradi
    Shigeru Furuichi
    Flavia-Corina Mitroi-Symeonidis
    Razieh Naseri
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 605 - 614
  • [6] Jensen's operator inequality and its converses
    Hansen, Frank
    Pecaric, Josip
    Peric, Ivan
    [J]. MATHEMATICA SCANDINAVICA, 2007, 100 (01) : 61 - 73
  • [7] On Jensen's inequality for operator convex functions
    Mond, B
    Pecaric, JE
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1995, 21 (04): : 739 - 754
  • [8] A SHARPER BOUND FOR THE JENSEN'S OPERATOR INEQUALITY
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Sababheh, Mohammed
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (04) : 747 - 758
  • [9] Operator Jensen’s inequality on C*-algebras
    Xin Li
    Wei Wu
    [J]. Acta Mathematica Sinica, English Series, 2014, 30 : 35 - 50
  • [10] Operator Jensen's Inequality on C*-algebras
    Xin LI
    Wei WU
    [J]. Acta Mathematica Sinica,English Series, 2014, 30 (01) : 35 - 50