Abstractive Text Summarization based on Language Model Conditioning and Locality Modeling

被引:0
|
作者
Aksenov, Dmitrii [1 ]
Moreno-Schneider, Julian [1 ]
Bourgonje, Peter [1 ]
Schwarzenberg, Robert [1 ]
Hennig, Leonhard [1 ]
Rehm, Georg [1 ]
机构
[1] DFKI GmbH, Alt Moabit 91c, D-10559 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
Summarisation; Language Modeling; Information Extraction; Information Retrieval; BERT; Locality Modeling;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We explore to what extent knowledge about the pre-trained language model that is used is beneficial for the task of abstractive summarization. To this end, we experiment with conditioning the encoder and decoder of a Transformer-based neural model on the BERT language model. In addition, we propose a new method of BERT-windowing, which allows chunk-wise processing of texts longer than the BERT window size. We also explore how locality modeling, i.e., the explicit restriction of calculations to the local context, can affect the summarization ability of the Transformer. This is done by introducing 2-dimensional convolutional self-attention into the first layers of the encoder. The results of our models are compared to a baseline and the state-of-the-art models on the CNN/Daily Mail dataset. We additionally train our model on the SwissText dataset to demonstrate usability on German. Both models outperform the baseline in ROUGE scores on two datasets and show its superiority in a manual qualitative analysis.
引用
收藏
页码:6680 / 6689
页数:10
相关论文
共 50 条
  • [1] Abstractive Text Summarization for the Urdu Language: Data and Methods
    Awais, Muhammad
    Muhammad Adeel Nawab, Rao
    [J]. IEEE ACCESS, 2024, 12 : 61198 - 61210
  • [2] A Survey of Abstractive Text Summarization Utilising Pretrained Language Models
    Syed, Ayesha Ayub
    Gaol, Ford Lumban
    Boediman, Alfred
    Matsuo, Tokuro
    Budiharto, Widodo
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT I, 2022, 13757 : 532 - 544
  • [3] Abstractive Text Summarization Using Enhanced Attention Model
    Roul, Rajendra Kumar
    Joshi, Pratik Madhav
    Sahoo, Jajati Keshari
    [J]. INTELLIGENT HUMAN COMPUTER INTERACTION (IHCI 2019), 2020, 11886 : 63 - 76
  • [4] Abstractive text summarization for Hungarian
    Yang, Zijian Gyozo
    Agocs, Adam
    Kusper, Gabor
    Varadi, Tamas
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 53 : 299 - 316
  • [5] A Survey on Abstractive Text Summarization
    Moratanch, N.
    Chitrakala, S.
    [J]. PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2016), 2016,
  • [6] An approach to Abstractive Text Summarization
    Huong Thanh Le
    Tien Manh Le
    [J]. 2013 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2013, : 371 - 376
  • [7] Survey on Abstractive Text Summarization
    Raphal, Nithin
    Duwarah, Hemanta
    Daniel, Philemon
    [J]. PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2018, : 513 - 517
  • [8] Abstractive Text Summarization Based on Semantic Alignment Network
    Wu, Shixin
    Huang, Degen
    Li, Jiuyi
    [J]. Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57 (01): : 1 - 6
  • [9] Abstractive Arabic Text Summarization Based on Deep Learning
    Wazery, Y. M.
    Saleh, Marwa E.
    Alharbi, Abdullah
    Ali, Abdelmgeid A.
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [10] Two New Datasets for Italian-Language Abstractive Text Summarization
    Landro, Nicola
    Gallo, Ignazio
    La Grassa, Riccardo
    Federici, Edoardo
    [J]. INFORMATION, 2022, 13 (05)