Deep Learning Based Modified Message Passing Algorithm for Sparse Code Multiple Access

被引:0
|
作者
Li, Lanping [1 ]
Tang, Xiaohu [1 ]
Tellambura, Chintha [2 ]
机构
[1] Southwest Jiaotong Univ, Lab Informat Coding & Transmiss, Chengdu 611756, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
关键词
sparse code multiple access (SCMA); shuffled; message passing algorithm (MPA); deep learning (DL);
D O I
10.1109/iwsda46143.2019.8966120
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Shuffled message passing algorithm (SMPA) is a serial variant of message passing algorithm (MPA) for sparse code multiple access (SCMA) signal detection, which accelerates the convergence rate of MPA. However, SMPA still achieves the near-optimal performance due to the effect of cycles in the factor graph. In the paper, we propose to optimize the weights assigned to the edges of the factor graph by unfolding SMPA as layers of deep neural network (DNN). We consider the weights as network parameters and then train the network offline to obtain weights which can minimize the loss function. With simulations, we show that DNN based SMPA (DNN-SMPA) outperforms SMPA in terms of bit-error-rate (BER) for the same level of computational complexity.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Efficient Sparse Code Multiple Access Decoder Based on Deterministic Message Passing Algorithm
    Zhang, Chuan
    Yang, Chao
    Pang, Xu
    Song, Wenqing
    Xu, Wei
    Zhang, Shunqing
    Zhang, Zaichen
    You, Xiaohu
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (04) : 3562 - 3574
  • [2] Sparse Code Multiple Access Decoding Using Message-Passing Algorithm
    Andhary, Lathifa Rizqi
    Nuha, Hilal H.
    Haryanti, Tita
    [J]. 2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 161 - 165
  • [3] Improved Message Passing Algorithms for Sparse Code Multiple Access
    Dai, Jincheng
    Niu, Kai
    Dong, Chao
    Lin, Jiaru
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (11) : 9986 - 9999
  • [4] Sparse Code Multiple Access Scheme Based on Variational Learning
    Yuan, Quan
    Wang, Zhenyong
    Li, Dezhi
    Guo, Qing
    Xiang, Wei
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 7989 - 8002
  • [5] Modified Sphere Decoding for Sparse Code Multiple Access
    Li, Lanping
    Wen, Jinming
    Tang, Xiaohu
    Tellambura, Chintha
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (08) : 1544 - 1547
  • [6] A novel deep neural network based approach for sparse code multiple access
    Lin, Jinzhi
    Feng, Shengzhong
    Yang, Zhile
    Zhang, Yun
    Zhang, Yong
    [J]. NEUROCOMPUTING, 2020, 382 : 52 - 63
  • [7] An Improved Detection Algorithm for Sparse Code Multiple Access System
    Wu Han
    Hao Baoming
    Shao Kai
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (08) : 2165 - 2170
  • [8] Sparse Code Multiple Access
    Nilopour, Hosein
    Baligh, Hadi
    [J]. 2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2013, : 332 - 336
  • [9] Sparse Bayesian Learning Based on Approximate Message Passing with Unitary Transformation
    Luo, Man
    Guo, Qinghua
    Huang, Defeng
    Xi, Jiangtao
    [J]. 2019 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM (APWCS 2019), 2019,
  • [10] Sparse Autoencoder for Sparse Code Multiple Access
    Singh, Medini
    Mishra, Deepak
    Vanidevi, M.
    [J]. 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 353 - 358