A search algorithm for global optimisation

被引:0
|
作者
Chen, S [1 ]
Wang, XX
Harris, CJ
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Aston Univ, Neural Comp Res Grp, Birmingham B4 7ET, W Midlands, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates a global search optimisation technique, referred to as the repeated weighted boosting search. The proposed optimisation algorithm is extremely simple and easy to implement. Heuristic explanation is given for the global search capability of this technique. Comparison is made with the two better known and widely used global search techniques, known as the genetic algorithm and adaptive simulated annealing. The effectiveness of the proposed algorithm as a global optimiser is investigated through several examples.
引用
收藏
页码:1122 / 1130
页数:9
相关论文
共 50 条
  • [1] PeSOA: Penguins Search Optimisation Algorithm for Global Optimisation Problems
    Gheraibia, Youcef
    Moussaoui, Abdelouahab
    Yin, Peng-Yeng
    Papadopoulos, Yiannis
    Maazouzi, Smaine
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2019, 16 (03) : 371 - 379
  • [3] On Improvements of the Human Mental Search Algorithm for Global Optimisation
    Mousavirad, Seyed Jalaleddin
    Schaefer, Gerald
    Esmaeili, Leila
    Korovin, Iakov
    [J]. 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [4] Direct Gravitational Search Algorithm for Global Optimisation Problems
    Ali, Ahmed F.
    Tawhid, Mohamed A.
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2016, 6 (03) : 290 - 313
  • [5] A learning and niching based backtracking search optimisation algorithm and its applications in global optimisation and ANN training
    Chen, Debao
    Lu, Renquan
    Zou, Feng
    Li, Suwen
    Wang, Peng
    [J]. NEUROCOMPUTING, 2017, 266 : 579 - 594
  • [6] Modified Adaptive Cuckoo Search (MACS) algorithm and formal description for global optimisation
    Zhang, Yongwei
    Wang, Lei
    Wu, Qidi
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 73 - 79
  • [7] A novel global Harmony Search method based on Ant Colony Optimisation algorithm
    Fouad, Allouani
    Boukhetala, Djamel
    Boudjema, Fares
    Zenger, Kai
    Gao, Xiao-Zhi
    [J]. JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2016, 28 (1-2) : 215 - 238
  • [8] A modified electromagnetism-like mechanism algorithm with pattern search for global optimisation
    Wu, Qing
    Zhang, Chunjiang
    Gao, Liang
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2018, 16 (04) : 430 - 440
  • [9] Hesitant adaptive search for global optimisation
    Bulger, DW
    Wood, GR
    [J]. MATHEMATICAL PROGRAMMING, 1998, 81 (01) : 89 - 102
  • [10] Global search strategies for simulation optimisation
    Magoulas, GD
    Eldabi, T
    Paul, RJ
    [J]. PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2002, : 1978 - 1985